In this paper, a multi-vehicle multi-task nonorthogonal multiple access (NOMA) assisted mobile edge computing (MEC) system with passive eavesdropping vehicles is investigated. To heighten the performance of edge vehicles, we propose a vehicle grouping pairing method, which utilizes vehicles near the MEC as full-duplex relays to assist edge vehicles. For promoting transmission security, we employ artificial noise to interrupt eavesdropping vehicles. Furthermore, we derive the approximate expression of secrecy outage probability of the system. The combined optimization of vehicle task division, power allocation, and transmit beamforming is formulated to minimize the total delay of task completion of edge vehicles. Then, we design a power allocation and task scheduling algorithm based on genetic algorithm to solve the mixed-integer nonlinear programming problem. Numerical results demonstrate the superiority of our proposed scheme in terms of system security and transmission delay.
翻译:本文调查了多车辆多任务、非横向多存取(NOMA)辅助移动边缘计算系统(MEC),使用被动窃听车辆。为了提高边缘车辆的性能,我们提议了一种车辆组合配对方法,将靠近MEC的车辆用作全多功能中继器,以协助边缘车辆。为了提高传输安全,我们使用人工噪音来干扰窃听车辆。此外,我们得出了系统密闭概率的近似表达方式。车辆任务分工、电力分配和传输波束组合的组合,以尽量减少边缘车辆任务完成的完全延迟。然后,我们根据遗传算法设计了一种动力分配和任务安排算法,以解决混合整数非线性编程问题。数字结果显示我们提议的计划在系统安全和传输延迟方面的优势。