Recent advancements in AI-driven 3D model generation have leveraged cross modality, yet generating models with smooth surfaces and minimizing storage overhead remain challenges. This paper introduces a novel multi-stage framework for generating 3D models composed of parameterized primitives, guided by textual and image inputs. In the framework, A model generation algorithm based on parameterized primitives, is proposed, which can identifies the shape features of the model constituent elements, and replace the elements with parameterized primitives with high quality surface. In addition, a corresponding model storage method is proposed, it can ensure the original surface quality of the model, while retaining only the parameters of parameterized primitives. Experiments on virtual scene dataset and real scene dataset demonstrate the effectiveness of our method, achieving a Chamfer Distance of 0.003092, a VIoU of 0.545, a F1-Score of 0.9139 and a NC of 0.8369, with primitive parameter files approximately 6KB in size. Our approach is particularly suitable for rapid prototyping of simple models.


翻译:暂无翻译

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Top
微信扫码咨询专知VIP会员