Art has long been a profound medium for expressing emotions. While existing image stylization methods effectively transform visual appearance, they often overlook the emotional impact carried by styles. To bridge this gap, we introduce Affective Image Stylization (AIS), a task that applies artistic styles to evoke specific emotions while preserving content. We present EmoStyle, a framework designed to address key challenges in AIS, including the lack of training data and the emotion-style mapping. First, we construct EmoStyleSet, a content-emotion-stylized image triplet dataset derived from ArtEmis to support AIS. We then propose an Emotion-Content Reasoner that adaptively integrates emotional cues with content to learn coherent style queries. Given the discrete nature of artistic styles, we further develop a Style Quantizer that converts continuous style features into emotion-related codebook entries. Extensive qualitative and quantitative evaluations, including user studies, demonstrate that EmoStyle enhances emotional expressiveness while maintaining content consistency. Moreover, the learned emotion-aware style dictionary is adaptable to other generative tasks, highlighting its potential for broader applications. Our work establishes a foundation for emotion-driven image stylization, expanding the creative potential of AI-generated art.


翻译:艺术长期以来一直是表达情感的深刻媒介。现有的图像风格化方法虽能有效改变视觉外观,却常忽略风格所承载的情感影响。为弥合这一差距,我们引入了情感图像风格化(AIS)任务,该任务通过应用艺术风格来唤起特定情感,同时保持内容不变。我们提出了EmoStyle框架,旨在解决AIS中的关键挑战,包括训练数据缺乏和情感-风格映射问题。首先,我们基于ArtEmis构建了EmoStyleSet数据集,这是一个包含内容-情感-风格化图像的三元组数据集,以支持AIS研究。接着,我们提出了一种情感-内容推理器,能自适应地整合情感线索与内容,以学习连贯的风格查询。鉴于艺术风格的离散性,我们进一步开发了风格量化器,将连续风格特征转换为与情感相关的码本条目。广泛的定性和定量评估(包括用户研究)表明,EmoStyle在保持内容一致性的同时增强了情感表现力。此外,所学的情感感知风格词典可适配于其他生成任务,凸显了其更广泛应用的潜力。我们的工作为情感驱动的图像风格化奠定了基础,拓展了AI生成艺术的创作可能性。

0
下载
关闭预览

相关内容

Top
微信扫码咨询专知VIP会员