We introduce Dynamic Retrieval-Augmented Expert Networks (DRAE), a groundbreaking architecture that addresses the challenges of lifelong learning, catastrophic forgetting, and task adaptation by combining the dynamic routing capabilities of Mixture-of-Experts (MoE); leveraging the knowledge-enhancement power of Retrieval-Augmented Generation (RAG); incorporating a novel hierarchical reinforcement learning (RL) framework; and coordinating through ReflexNet-SchemaPlanner-HyperOptima (RSHO).DRAE dynamically routes expert models via a sparse MoE gating mechanism, enabling efficient resource allocation while leveraging external knowledge through parametric retrieval (P-RAG) to augment the learning process. We propose a new RL framework with ReflexNet for low-level task execution, SchemaPlanner for symbolic reasoning, and HyperOptima for long-term context modeling, ensuring continuous adaptation and memory retention. Experimental results show that DRAE significantly outperforms baseline approaches in long-term task retention and knowledge reuse, achieving an average task success rate of 82.5% across a set of dynamic robotic manipulation tasks, compared to 74.2% for traditional MoE models. Furthermore, DRAE maintains an extremely low forgetting rate, outperforming state-of-the-art methods in catastrophic forgetting mitigation. These results demonstrate the effectiveness of our approach in enabling flexible, scalable, and efficient lifelong learning for robotics.


翻译:我们提出了动态检索增强专家网络(DRAE),这是一种突破性的架构,通过结合混合专家(MoE)的动态路由能力、利用检索增强生成(RAG)的知识增强能力、引入一种新颖的分层强化学习(RL)框架,并通过ReflexNet-SchemaPlanner-HyperOptima(RSHO)进行协调,以应对终身学习、灾难性遗忘和任务适应方面的挑战。DRAE通过稀疏MoE门控机制动态路由专家模型,实现高效的资源分配,同时利用参数化检索(P-RAG)获取外部知识以增强学习过程。我们提出了一种新的RL框架,其中ReflexNet负责低层任务执行,SchemaPlanner负责符号推理,HyperOptima负责长期上下文建模,从而确保持续适应和记忆保持。实验结果表明,DRAE在长期任务保持和知识重用方面显著优于基线方法,在一组动态机器人操作任务中平均任务成功率达到82.5%,而传统MoE模型为74.2%。此外,DRAE保持了极低的遗忘率,在缓解灾难性遗忘方面优于现有最先进方法。这些结果证明了我们的方法在实现灵活、可扩展且高效的机器人终身学习方面的有效性。

0
下载
关闭预览

相关内容

Top
微信扫码咨询专知VIP会员