Cloud computing enables remote execution of users tasks. The pervasive adoption of cloud computing in smart cities services and applications requires timely execution of tasks adhering to Quality of Services (QoS). However, the increasing use of computing servers exacerbates the issues of high energy consumption, operating costs, and environmental pollution. Maximizing the performance and minimizing the energy in a cloud data center is challenging. In this paper, we propose a performance and energy optimization bi-objective algorithm to tradeoff the contradicting performance and energy objectives. An evolutionary algorithm-based multi-objective optimization is for the first time proposed using system performance counters. The performance of the proposed model is evaluated using a realistic cloud dataset in a cloud computing environment. Our experimental results achieve higher performance and lower energy consumption compared to a state of the art algorithm.


翻译:云计算可以远程执行用户任务。 在智能城市服务和应用程序中普遍采用云计算要求及时执行遵守服务质量(Qos)的任务。 然而,计算机服务器的日益使用加剧了高能源消耗、运行成本和环境污染问题。 云计算数据中心的性能最大化和将能源最小化具有挑战性。 在本文件中,我们提出了一个绩效和能源优化双目标算法,以抵消相互矛盾的性能和能源目标。基于进化算法的多目标优化是首次使用系统性能计数器提出来的。拟议模型的性能是通过在云计算环境中使用现实的云数据集进行评估的。我们的实验结果实现了更高的性能和较低的能源消耗,而与艺术性能算法的状态相比是更低的。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
IEEE | 顶级期刊IoTJ物联网专刊诚邀稿件
Call4Papers
7+阅读 · 2019年5月20日
已删除
架构文摘
3+阅读 · 2019年4月17日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
VIP会员
相关资讯
Top
微信扫码咨询专知VIP会员