As the use and diversity of diagrams across many disciplines grows, there is an increasing interest in the diagrams research community concerning how such diversity might be documented and explained. In this article, we argue that one way of achieving increased reliability, coverage, and utility for a general classification of diagrams is to draw on recently developed semiotic principles developed within the field of multimodality. To this end, we sketch out the internal details of what may tentatively be termed the diagrammatic semiotic mode. This provides a natural account of how diagrammatic representations may integrate natural language, various forms of graphics, diagrammatic elements such as arrows, lines and other expressive resources into coherent organisations, while still respecting the crucial diagrammatic contributions of visual organisation. We illustrate the proposed approach using two recent diagram corpora and show how a multimodal approach supports the empirical analysis of diagrammatic representations, especially in identifying diagrammatic constituents and describing their interrelations in a manner that may be generalised across diagram types and be used to characterise distinct kinds of functionality.


翻译:随着不同学科图表的使用和多样性的增加,对于如何记录和解释这种多样性的图表研究界越来越感兴趣。在本篇文章中,我们认为,提高图表总体分类的可靠性、覆盖面和实用性的一种方法,是借鉴在多式联运领域最近制定的半科学原则。为此,我们勾画出暂时可称为图示半科学模式的内部细节。这自然说明了图表表达方式如何将自然语言、各种形式的图表、箭头、直线和其他直观资源等图表元素纳入连贯的组织,同时尊重视觉组织的关键图表贡献。我们用最近两个图表公司展示了拟议方法,并展示了多式方法如何支持对图表表达方式进行的经验分析,特别是在确定图表成分和描述其相互关系时,其方式可以跨越图表类型,并用于描述不同功能的特征。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
11+阅读 · 2021年3月25日
An Attentive Survey of Attention Models
Arxiv
44+阅读 · 2020年12月15日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
15+阅读 · 2018年4月3日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员