In recent years, processing in memory (PIM) based mixedsignal designs have been proposed as energy- and area-efficient solutions with ultra high throughput to accelerate DNN computations. However, PIM designs are sensitive to imperfections such as noise, weight and conductance variations that substantially degrade the DNN accuracy. To address this issue, we propose a novel algorithm-hardware co-design framework hereafter referred to as HybridAC that simultaneously avoids accuracy degradation due to imperfections, improves area utilization, and reduces data movement and energy dissipation. We derive a data-movement-aware weight selection method that does not require retraining to preserve its original performance. It computes a fraction of the results with a small number of variation-sensitive weights using a robust digital accelerator, while the main computation is performed in analog PIM units. This is the first work that not only provides a variation-robust architecture, but also improves the area, power, and energy of the existing designs considerably. HybridAC is adapted to leverage the preceding weight selection method by reducing ADC precision, peripheral circuitry, and hybrid quantization to optimize the design. Our comprehensive experiments show that, even in the presence of variation as high as 50%, HybridAC can reduce the accuracy degradation from 60 - 90% (without protection) to 1 - 2% for different DNNs across diverse datasets. In addition to providing more robust computation, compared to the ISAAC (SRE), HybridAC improves the execution time, energy, area, power, area-efficiency, and power-efficiency by 26%(14%), 52%(40%), 28%(28%), 57%(45%), 43%(5x), and 81%(3.9x), respectively


翻译:近些年来,基于记忆(PIM)的混合信号设计被建议作为能量和地区高效解决方案进行处理,其输出量超高,以加速 DNN 计算。然而,PIM 设计对噪音、重量和导力变化等不完善之处敏感,从而大大降低 DNN 的准确性。为了解决这一问题,我们提议了一个新的算法硬件共同设计框架(以下称为 GmbIAC ),它不仅可以避免由于不完善而导致精确退化,改进面积利用率,减少数据流动和能量耗损。我们产生了一种数据移动-觉悟重量选择方法,不需要再培训来保持其原有性能。然而,PIM 设计对变化敏感度变化的一小部分,使用强大的数字加速器,同时在模拟 PIM 单位中进行主要计算。这是第一次不仅提供变压结构,而且可以大大改善现有设计的面积、能量和能量(区域, 区域,NFINE) 。 混合AC 可以通过降低 ADC 精确性、 28 电路路段, 和混合电路段 将50-E 版的能量变化显示我们的数据设计中的深度区域, 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月18日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员