We show that when a Brownian bridge is physically constrained to satisfy a canonical condition, its time evolution exactly coincides with an m-geodesic on the statistical manifold of Gaussian distributions. This identification provides a direct physical realization of a geometric concept in information geometry. It implies that purely random processes evolve along informationally straight trajectories, analogous to geodesics in general relativity. Our findings suggest that the asymmetry of informational ``distance" (divergence) plays a fundamental physical role, offering a concrete step toward an equivalence principle for information.


翻译:我们证明,当布朗桥被物理约束以满足一个正则条件时,其时间演化与高斯分布统计流形上的 m-测地线精确重合。这一对应为信息几何中的几何概念提供了直接的物理实现。它意味着纯随机过程沿着信息意义上的直线轨迹演化,类似于广义相对论中的测地线。我们的发现表明,信息“距离”(散度)的非对称性起着根本的物理作用,为信息的等效原理提供了具体的一步。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Top
微信扫码咨询专知VIP会员