In this paper, we propose the first-ever real benchmark thought for evaluating Neural Radiance Fields (NeRFs) and, in general, Neural Rendering (NR) frameworks. We design and implement an effective pipeline for scanning real objects in quantity and effortlessly. Our scan station is built with less than 500$ hardware budget and can collect roughly 4000 images of a scanned object in just 5 minutes. Such a platform is used to build ScanNeRF, a dataset characterized by several train/val/test splits aimed at benchmarking the performance of modern NeRF methods under different conditions. Accordingly, we evaluate three cutting-edge NeRF variants on it to highlight their strengths and weaknesses. The dataset is available on our project page, together with an online benchmark to foster the development of better and better NeRFs.
翻译:在本文中,我们提出了用于评价神经辐射场(Neoral Radiance Fields)和一般而言神经辐射场(NR)框架的首个实际基准。我们设计和实施一个有效管道,以数量和不费力地扫描真实物体。我们的扫描站以不到500美元的硬件预算建造,可以在5分钟内收集大约4 000张扫描物体的图像。这个平台用来建造ScanNERF数据集,其特点是若干列火车/Val/测试,目的是在不同的条件下为现代NeRF方法的性能制定基准。因此,我们评估了三个尖端NeRF变量,以突出它们的长处和短处。在我们的项目网页上提供了数据集,以及一个在线基准,以促进更好和更好的NERF的开发。