The relative abundances of species in a microbiome is a scientifically important parameter to estimate given the critical role that microbiomes play in human and environmental health. However, data from artificially constructed microbiomes shows that measurement error may induce substantial bias in common estimators of this quantity. To address this, we propose a semiparametric model that accounts for common forms of measurement error in microbiome experiments. Notably, our model allows relative abundances to lie on the boundary of the simplex. We present a stable algorithm for computing parameter estimates, asymptotically valid procedures for inference in this nonstandard problem, and examples of the utility of the method. Our approach can be used to select or compare experimental protocols, design experiments with appropriate control data, analyze mixed-specimen samples, and remove across-sample contamination.
翻译:鉴于微生物对人类和环境健康的关键作用,微生物中的物种相对丰度是一个具有科学重要性的参数,可以用来估计微生物在人类和环境健康中的关键作用。然而,人造微生物的数据表明,测量错误可能会在共同估测这一数量时产生重大偏差。为此,我们提出了一个半参数模型,用于计算微生物实验中常见的测量错误形式。值得注意的是,我们的模型允许相对丰度存在于简单x的边界上。我们提出了一个计算参数估计的稳定算法,这个非标准问题的推论程序不具有初步效力,以及该方法的实用性实例。我们的方法可以用来选择或比较实验规程,用适当的控制数据设计实验,分析混合物种样本,并排除跨类的污染。