Transformer-based pre-trained models, such as BERT, have achieved remarkable results on machine reading comprehension. However, due to the constraint of encoding length (e.g., 512 WordPiece tokens), a long document is usually split into multiple chunks that are independently read. It results in the reading field being limited to individual chunks without information collaboration for long document machine reading comprehension. To address this problem, we propose RoR, a read-over-read method, which expands the reading field from chunk to document. Specifically, RoR includes a chunk reader and a document reader. The former first predicts a set of regional answers for each chunk, which are then compacted into a highly-condensed version of the original document, guaranteeing to be encoded once. The latter further predicts the global answers from this condensed document. Eventually, a voting strategy is utilized to aggregate and rerank the regional and global answers for final prediction. Extensive experiments on two benchmarks QuAC and TriviaQA demonstrate the effectiveness of RoR for long document reading. Notably, RoR ranks 1st place on the QuAC leaderboard (https://quac.ai/) at the time of submission (May 17th, 2021).


翻译:BERT等基于预先训练的变换器模型在机器阅读理解上取得了显著成果。然而,由于编码长度的限制(例如512 WordPiece 符号512 WordPiece 符号),一个长的文档通常被分成多个独立阅读的块块。在阅读字段中,其结果仅限于单个块,而没有长期文档机读理解的信息协作。为了解决这一问题,我们提议了将阅读字段从块块扩大为文档的读取方法RoR。具体地说,RoR包括一个大块阅读器和一个文件阅读器。前一个文件预测了每个块的一套区域答案,然后将其压缩成一个高度隐蔽的原始文件版本,保证一次性加密。后一个文件进一步预测了从这一压缩文档中得出的全球答案。最后,我们利用了一种投票战略来汇总和重新排列区域和全球最后预测的答案。在QuAC和TriviaQA两个基准上进行的广泛实验,展示了罗尔对长期文件阅读的有效性。显著的是,RoR在QuAC领导人的17-May21号(httpsqualbal)上排名第1位(httpsqual21)。

0
下载
关闭预览

相关内容

包括微软、CMU、Stanford在内的顶级人工智能专家和学者们正在研究更复杂的任务:让机器像人类一样阅读文本,进而根据对该文本的理解来回答问题。这种阅读理解就像是让计算机来做我们高考英语的阅读理解题。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【文本匹配】Question Answering论文
深度学习自然语言处理
8+阅读 · 2020年4月20日
已删除
将门创投
6+阅读 · 2019年1月2日
ERROR: GLEW initalization error: Missing GL version
深度强化学习实验室
9+阅读 · 2018年6月13日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
3+阅读 · 2018年11月29日
Knowledge Based Machine Reading Comprehension
Arxiv
4+阅读 · 2018年9月12日
VIP会员
相关资讯
【文本匹配】Question Answering论文
深度学习自然语言处理
8+阅读 · 2020年4月20日
已删除
将门创投
6+阅读 · 2019年1月2日
ERROR: GLEW initalization error: Missing GL version
深度强化学习实验室
9+阅读 · 2018年6月13日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员