项目名称: 群感知模式下的收益优化机制与算法研究

项目编号: No.61472460

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 自动化技术、计算机技术

项目作者: 韩恺

作者单位: 中原工学院

项目金额: 83万元

中文摘要: 随着智能手机等手持移动设备的普及,利用配备在移动设备中的传感器来执行感知任务(即群感知)已经成为当前的研究热点。群感知模式具有一系列独有特征,包括用户参与动因的贫乏性、群感知的时间敏感性、群感知数据质量的不确定性、群感知用户的异构性、动态性和社会性等。为此,本项目针对群感知模式的独有特征和新型挑战,利用组合优化、机制设计、在线机器学习等相关理论和技术,对如何优化群感知模式下的收益展开深入研究,从而提高通过收集群感知数据所获取的价值。研究内容包括诚实的群感知调度机制、不确定环境下的群感知用户招募算法、群感知模式下的协作感知算法、面向变化用户群体的动态群感知机制、基于移动社交网络的群感知算法,以及群感知模式下收益优化机制与算法的实验验证等。通过这一研究,本项目将设计出一系列高效实用的群感知模式下的收益优化机制和算法,能够为促进群感知模式的实用性和普及性提供有效的理论和技术支撑。

中文关键词: 移动计算;群感知;收益优化;算法设计;机制设计

英文摘要: With the proliferation of hand-held mobile devices such as smart phones, using sensor-equipped mobile devices to fulfill sensing tasks (i.e., crowdsensing) has become a hot research topic recently. The paradigm of crowdsensing has a series of unique features, such as the lack of incentives for participation, the time-sensitivity, the uncertainty of sensing quality, as well as the heterogeneity, dynamics and sociality of the crowdsensing users. Facing the new challenges brought by these unique features, this project thoroughly studies the revenue optimization problem in crowdsensing to improve the sensing value gained by collecting crowdsensing data, leveraging related theories and techniques including combinatorial optimization, mechanism design and online machine learning. The detailed issues studied in this project include the truthful time-scheduling mechanism, the user recruitment algorithm under uncertainty, the algorithms for cooperative crowdsensing, the dynamic mechanisms for variable user groups, the crowdsensing algorithms based on mobile social networks, and the performance valuation of the proposed mechanisms and algorithms for crowdsensing. Through the study of this project, we will design a series of practical and efficient mechanisms and algorithms for revenue optimization in crowdsensing, which can provide significant theoretical and technical supports to improve the practicability and popularity of the crowdsensing paradigm.

英文关键词: mobile computing;crowdsensing;revenue optimization;algorithm design;mechanism design

成为VIP会员查看完整内容
0

相关内容

【AAAI2022】不确定性感知的多视角表示学习
专知会员服务
45+阅读 · 2022年1月25日
【新书】感知和行动的贝叶斯模型,348页pdf
专知会员服务
71+阅读 · 2021年11月18日
专知会员服务
17+阅读 · 2021年6月12日
专知会员服务
51+阅读 · 2020年12月19日
专知会员服务
77+阅读 · 2020年12月6日
【2020新书】从Excel中学习数据挖掘,223页pdf
专知会员服务
90+阅读 · 2020年6月28日
【CMU】深度学习模型中集成优化、约束和控制,33页ppt
专知会员服务
45+阅读 · 2020年5月23日
基于深度学习的多标签生成研究进展
专知会员服务
142+阅读 · 2020年4月25日
手机装不下骁龙8了
量子位
0+阅读 · 2021年12月4日
【新书】感知和行动的贝叶斯模型,348页pdf
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Convex-Concave Min-Max Stackelberg Games
Arxiv
0+阅读 · 2022年4月19日
Talking-Heads Attention
Arxiv
15+阅读 · 2020年3月5日
小贴士
相关VIP内容
【AAAI2022】不确定性感知的多视角表示学习
专知会员服务
45+阅读 · 2022年1月25日
【新书】感知和行动的贝叶斯模型,348页pdf
专知会员服务
71+阅读 · 2021年11月18日
专知会员服务
17+阅读 · 2021年6月12日
专知会员服务
51+阅读 · 2020年12月19日
专知会员服务
77+阅读 · 2020年12月6日
【2020新书】从Excel中学习数据挖掘,223页pdf
专知会员服务
90+阅读 · 2020年6月28日
【CMU】深度学习模型中集成优化、约束和控制,33页ppt
专知会员服务
45+阅读 · 2020年5月23日
基于深度学习的多标签生成研究进展
专知会员服务
142+阅读 · 2020年4月25日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员