项目名称: 长寿命氮化镓基蓝光激光器关键科学与技术问题研究

项目编号: No.61334005

项目类型: 重点项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 张书明

作者单位: 中国科学院苏州纳米技术与纳米仿生研究所

项目金额: 300万元

中文摘要: 氮化镓基(GaN)蓝光激光器在信息传输、获取、处理、存储和显示等方面有重大需求和广泛应用。本课题将研究GaN基激光器的受激辐射行为和物理机制;建立理论模型研究GaN基激光器的电学特性和发光特性;在GaN紫光激光器的基础上,设计新型GaN蓝光激光器结构,降低p型层中的光损耗;研究量子阱生长过程中缺陷的抑制及减小极化效应方法,实现高效率的量子阱;研究P型AlGaN中的补偿机制,实现高效率P型掺杂;采用隧道结结构或InGaN/GaN表面接触层,制备性能优异的欧姆接触电极;设计解理导向槽,改善激光器解理腔面质量和可靠性,采用纳米银焊料增强激光器的散热;研究激光器中强光场、电场与半导体材料的及掺杂元素的相互作用机制,解决激光器的可靠性问题,最终突破氮化镓基蓝光激光器关键科学和技术问题,研制成功寿命大于5000小时,输出功率大于500mW的蓝光激光器。

中文关键词: 受激辐射;氮化镓基激光器;量子阱;P型掺杂;失效

英文摘要: GaN-based blue laser diodes have been widely used in the information transmission, acquiring, processing, storage and display. This subject will study the behavior and physical mechanisms of stimulated emission, establish a theoretical model of the electrical and optical characteristics of GaN-based laser diodes, optimize the structure of blue laser diodes based on violet laser diodes to reduce absorption loss of p-type layers, study the defect inhibition in the growth process of quantum wells and method of reducing polarization effect to achieve high efficient quantum wells, investigate the compensation mechanism of p-type AlGaN to achieve high efficiency of p-type doping, and develop low-resistance ohmic contact by tunneling junction or InGaN/GaN contact layers. In addition, it will also improve quality and reliability of the cavity facet by cleave-guided groove, enhance heat dissipation by using nano-silver solder, and investigate interaction mechanisms between light field, electrical field, and materials, to resolve problems of reliability in GaN-based blue laser diodes. Finally, we will solve the key scientific and technical problems of GaN-based blue laser diodes, and achieve high-power and long-lifetime blue laser diodes, the power is greater than 500mW, and the lifetime is longer than 5000 hours.

英文关键词: stimulated emission;GaN-based laser diodes;quantumn well;P-type doping;failure

成为VIP会员查看完整内容
0

相关内容

《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
军事知识图谱构建技术
专知会员服务
125+阅读 · 2022年4月8日
6G物理层AI关键技术白皮书(2022)
专知会员服务
42+阅读 · 2022年3月21日
华为:6G:无线通信新征程(附报告),30页pdf
专知会员服务
59+阅读 · 2022年2月28日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
51+阅读 · 2020年12月28日
专知会员服务
46+阅读 · 2020年11月21日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月7日
Arxiv
58+阅读 · 2021年11月15日
小贴士
相关VIP内容
《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
军事知识图谱构建技术
专知会员服务
125+阅读 · 2022年4月8日
6G物理层AI关键技术白皮书(2022)
专知会员服务
42+阅读 · 2022年3月21日
华为:6G:无线通信新征程(附报告),30页pdf
专知会员服务
59+阅读 · 2022年2月28日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
51+阅读 · 2020年12月28日
专知会员服务
46+阅读 · 2020年11月21日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员