科研人员利用单分子荧光技术发现端粒DNA G三联体多种结构与折叠路径

2018 年 12 月 3 日 中科院之声

DNA是生物遗传信息的重要载体,除了经典双螺旋结构外,在真核生物染色体基因调控序列以及端粒中还广泛存在一种G四联体结构。G四联体结构在调控基因表达和维持基因组稳定性等生物学过程中扮演着重要角色。单分子荧光技术是观察与测量生物大分子构象变化的重要手段,非常适合观察G四联体结构的折叠过程。中国科学院物理研究所软物质物理重点实验室从2002年开始逐步建立起包括单分子荧光、磁镊以及原子力显微镜技术的单分子研究体系,在DNA凝聚(JACS 2006,PRL 2012)、DNA与抗癌药物作用(NAR 2009, PRE 2015)以及端粒G四联体DNA的折叠(JACS 2013, ACS OMEGA 2016, Biosci.Rep.2017)等有关DNA分子结构的课题中进行了系统性的研究,获得一系列进展。


最近,中科院物理所/北京凝聚态物理国家研究中心软物质实验室王鹏业研究组的博士生吕袭明,在研究员窦硕星和副研究员李辉的指导下,与西北农林科技大学教授奚绪光合作,通过单分子荧光共振能量转移技术(smFRET)对端粒G四联体的重要折叠中间体——G三联体的折叠动力学展开了研究,阐明了G三联体DNA的两种结构,解析了两种结构的折叠路径,以及侧链DNA对其折叠的影响。G三联体DNA的平行结构是该研究首次发现的。该工作发表在Journal of Physical Chemistry B 杂志上,并被选为期刊封面(图1)。


研究人员通过对G-三联体DNA序列的多个位点进行荧光标记,使用单分子荧光共振能量转移(smFRET)技术成功区分了G三联体的平行与反平行结构。在特定的标记方式下,同一种G三联体DNA序列在折叠成两种G三联体结构(图2A)时,因为荧光标记位点的距离不同,展现出了能量传递效率上的差异(图2B)。结合圆二色谱技术,研究者发现当G三联体DNA序列两端存在单链或者双链DNA时,G三联体的折叠速度均有明显降低;当G三联体DNA序列5’端存在单链或者双链DNA时,反平行G三联体结构的折叠过程受到一定程度的抑制(图3)。该研究在此基础上提出了G三联体结构的多折叠路径模型(图4)。由于G三联体结构是G四联体的重要折叠中间体,此模型因此也完善了原有G四联体的折叠路径,为研究完整端粒DNA的折叠过程打下良好基础,对于理解人类端粒G4 DNA的结构特性及其生物学功能具有重要意义。


该工作得到国家自然科学基金、科技部和中科院等的资助。


 

图1:该工作发表在Journal of Physical Chemistry B 杂志上,并被选为期刊封面


图2:A为两种构型的G三联体DNA在荧光标记下展现出不同的标记位点距离;B为在100 mM K+中,两种G三联体DNA因荧光标记位点距离不同而产生能量传递效率EFRE的差异,左侧柱状分布图中橙色高斯峰对应反平行结构G三联体,而蓝色高斯峰对应此次首次发现的平行结构G三联体。右侧EFRET-t曲线反映对应条件下单个G三联体的折叠动态。


图3:A为TTA单链DNA位于G三联体3’端时,向体系中加入100 mM KCl前后24h内圆二色谱变化图;B为TTA单链DNA位于G三联体5’端时,向体系中加入100mM KCl前后24 h内圆二色谱变化图,对比A图290 nm处反平行结构G三联体特征峰降低,说明此条件下侧链对该结构折叠过程有抑制作用。


图4:基于首次在单分子层面发现的平行结构G三联体DNA,研究者提出的G三联体DNA多折叠路径模型


来源:中国科学院物理研究所 


温馨提示:近期,微信公众号信息流改版。每个用户可以设置 常读订阅号,这些订阅号将以大卡片的形式展示。因此,如果不想错过“中科院之声”的文章,你一定要进行以下操作:进入“中科院之声”公众号 → 点击右上角的 ··· 菜单 → 选择「设为星标」


登录查看更多
0

相关内容

专知会员服务
131+阅读 · 2020年7月10日
大数据安全技术研究进展
专知会员服务
95+阅读 · 2020年5月2日
专知会员服务
45+阅读 · 2020年3月6日
2019中国硬科技发展白皮书 193页
专知会员服务
85+阅读 · 2019年12月13日
浅谈群体智能——新一代AI的重要方向
中国科学院自动化研究所
44+阅读 · 2019年10月16日
物理学家终于找到了一种拯救薛定谔猫的方法
中科院物理所
8+阅读 · 2019年6月10日
同质结中的“超注入”现象:半导体光源迎来新机遇!
王维嘉:暗知识——机器认知的颠覆
亚布力中国企业家论坛
5+阅读 · 2019年3月12日
【大数据】海量数据分析能力形成和大数据关键技术
产业智能官
17+阅读 · 2018年10月29日
综述 | 知识图谱发展概述
PaperWeekly
75+阅读 · 2017年11月3日
赛尔原创 | 知识图谱的发展概述
哈工大SCIR
8+阅读 · 2017年10月16日
结合弱监督信息的凸聚类
计算机研究与发展
6+阅读 · 2017年8月30日
Arxiv
5+阅读 · 2018年4月22日
Arxiv
3+阅读 · 2018年4月18日
VIP会员
相关VIP内容
专知会员服务
131+阅读 · 2020年7月10日
大数据安全技术研究进展
专知会员服务
95+阅读 · 2020年5月2日
专知会员服务
45+阅读 · 2020年3月6日
2019中国硬科技发展白皮书 193页
专知会员服务
85+阅读 · 2019年12月13日
相关资讯
浅谈群体智能——新一代AI的重要方向
中国科学院自动化研究所
44+阅读 · 2019年10月16日
物理学家终于找到了一种拯救薛定谔猫的方法
中科院物理所
8+阅读 · 2019年6月10日
同质结中的“超注入”现象:半导体光源迎来新机遇!
王维嘉:暗知识——机器认知的颠覆
亚布力中国企业家论坛
5+阅读 · 2019年3月12日
【大数据】海量数据分析能力形成和大数据关键技术
产业智能官
17+阅读 · 2018年10月29日
综述 | 知识图谱发展概述
PaperWeekly
75+阅读 · 2017年11月3日
赛尔原创 | 知识图谱的发展概述
哈工大SCIR
8+阅读 · 2017年10月16日
结合弱监督信息的凸聚类
计算机研究与发展
6+阅读 · 2017年8月30日
Top
微信扫码咨询专知VIP会员