【院士讲堂】谭铁牛:生物识别是未来的趋势

2018 年 2 月 5 日 中国科学院自动化研究所 紫冬君
CASIA
点击蓝字关注我们↑↑↑↑
试 想

如果在机场的安检系统没有旅客的人工比对系统,没有身份证、没有护照,仅仅凭借各种传感设备记录的信息来核对身份,乘客自如的登机,有没有这个可能?我想大多数人的第一个反应,这是不可能的,如果识别错了呢?如果这个人带着面具呢、如果这个人做了美容、如果这个人做了手术呢、如果这个人变老呢?想象一下,有太多的不可能。

 

但是,谭铁牛院士告诉我们

这不仅不是不可能,而且还是未来的趋势。



我们的身份信息包含着年龄、性别、民族等信息,年龄性别民族等信息我们称为人口学特征。谭院士的讲座就是告诉我们如何通过人脸识别、指纹识别、声纹识别、耳型识别以及虹膜识别甚至加上签名识别等生物识别来确定这个人的人口学特征。



在讲座引入阶段,谭院士介绍了生物识别的概念:生物识别也叫“生物特征识别”,即根据人自身的特征,比如你的指纹来识别人的身份。这些自身的特征,就叫做生物特征,有两大类:一类叫生理特征,另一类叫行为特征。生理特征是与生俱来的,比如你的指纹、你的虹膜;行为特征是后天习惯使然,比如:走路的样子,写字的笔迹。人体有很多可以用来进行身份验证的生物特征。



在本讲座中,谭院士讲述了6大生物特征类:面部、声音、步态、指纹、虹膜、笔迹,利用这6大生物特征来估计人的性别、年龄和种族这三大人口学身份,并讲述了其涉及的模型和方法。



生物识别的技术来进行人口学特征分析标志性事件开始于1988年通过声音识别性别,而随着信息采集技术的进步以及深度学习技术的发展,人口学特征分析准确度越来越高,针对每一种生物识别技术,谭院士都是从问题提出、问题过去及现在解决方案以及问题挑战三个角度来阐述问题。


首先他讲述的是生物特征获取技术,手机、网络、智能穿戴设备、检测设备等都可以获取到人体生物学信息。


然后讲述了应用最为成熟的指纹识别方法,传统的指纹表示方法有山脊数、不对称山脊数、山脊厚度、山谷厚度比(RTVTR)等特征提取方法,也有小波表示和纹理分析方法。而最为奇妙的是男女的指纹特征并不一致,所以指纹识别可以用于性别的分类。


而用于人口学特征分析的人脸识别技术最开始是几何学分析,用鼻嘴眼的距离等特征来做特征脸,这个方法仅仅能分析正面图像,而且忽略了纹理信息,随后是Holisic模型和流形学习在人脸识别中的应用提高了识别的正确率,目前流行的深度学习技术在人脸识别的成功应用更是极大提升了人口学特征提取的精确度。但是人脸识别的各种技术均依赖于获取脸部图像的质量。


谭院士提出了三个挑战,包括侧脸图像、低分辨率的图像、光照或者遮挡的图像对人脸识别的影响。这三个挑战,与及其学生给出了用深度学习或者对抗网络来生成正面图像、高分辨率图像以及其他的调整,效果都相当好。从而也可见,此次的讲座给出我们一个解决问题的框架:提出问题、问题的传统与现在的解决方案以及问题的挑战及解决的方法。


人脸识别对年龄的识别传统的方法有BIF + Adaboost + SVM等,这些方法可以实现跟人工识别相同的效果,而卷积神经网络的应用使得对年龄估计的正确度会超过人类。但是对于非标准化的数据集人口学的预测可能相互影响,比如年龄估计会受到民族的影响,也会受到性别的影响。


而对好像千篇一律的人的行走方式在识别方面却表现出惊人的准确性。应用于人口学预测的步态识别传统方法有基于点光源的方法、基于模型和基于表观的方法。谭院士展示了他和其学生合作的基于CNN的深度学习方法在身份识别中的应用视频,该视频可以在中央电视台的机智过人栏目中查看。

观看网址:

http://tv.cctv.com/2017/09/15/VIDEjBtstfgHYmEOl2gm9PUQ170915.shtml


当然谭院士是虹膜识别方面的专家,虹膜识别的纹理特征分析在性别识别方面应用也较为成功,结合Gabor滤波、线性滤波以及尺度不变滤波等小波分析方法能较好的进行身份识别。


声音识别主要是提取声纹和声韵特征来分析性别、年龄。LPCC、MFCC和PLP系数在性别之间的辨识度较高,如果加上振幅、频率、能量等分析方法,声纹的识别度会更高。



手写体受到人们身体素质、年龄生活方式等因素的影响,从而根据手写体来分析人口学特征具有先天的优势。微观上的字体梯度、结构和凸凹性以及宏观上的字体的倾斜性、字符间距和灰度值都可以作为人口特征探索的特征。而由于电子签名的应用,书写速度、书写方向、倾斜度和曲率等因素的记录更可以加强手写体识别的辨识度。


总之,综合各种生物识别方法可以较好的识别出个人的性别、年龄、种族等人口学特征。下表是各种生物特征识别的方法和应用。


谭院士的讲座通俗易懂,深入浅出。即有引用文献也有使用数据集,对该领域的学习者来说都是难得的学习资料,而研究方法从传统方法到深度学习,特征提取从显性到隐性,都显示了现代研究方法的演绎过程。总之,教我们学会研究方法,教我们不同角度去思考问题,比如性别的识别除了人脸之外,还有指纹识别,虹膜识别以及书写识别,则研究的准确度就可以达到相当的高度;从理论到引用到产品,一个系统的研究展现在我们面前。聆听者无不集中精力,全神贯注,每有会意则赞叹不已,以为妙绝。

2018年生物特征识别冬令营(IAPR/IEEE Winter School on Biometrics 2018)由IAPR和IEEE冠名和赞助,于2018年1月29日至2月2日在深圳举办,由香港浸会大学计算机科学系、中科院自动化所和深圳大学计算机与软件学院联合主办。本文按谭铁牛院士在生物特征识别冬令营(WSB2018)的报告《Biometric Data Analysis》进行整理。



更多精彩内容,欢迎关注

中科院自动化所官方网站:

http://www.ia.ac.cn

欢迎后台留言、推荐您感兴趣的话题、内容或资讯,小编恭候您的意见和建议!如需转载或投稿,请后台私信。

文字/图片:生物特征识别冬令营

编辑:欧梨成

解锁更多智能之美

中科院自动化研究所

微信:casia1956

欢迎搭乘自动化所AI旗舰号!

登录查看更多
3

相关内容

谭铁牛,研究员,博士生导师。现为中央人民政府驻香港特别行政区联络办公室副主任、中科院自动化所智能感知与计算研究中心主任,是中国科学院院士、英国皇家工程院外籍院士、发展中国家科学院院士、巴西科学院通讯院士。主要从事图像处理、计算机视觉和模式识别等领域的研究工作。主持过一批由国家基金委、国家973计划、863计划、国家重点研发计划等资助的科研项目。现已出版编著和专著14部,在国际主流学术期刊与会议上发表论文600多篇,获准和申请发明专利100多项。曾获国家技术发明二等奖、国家自然科学二等奖和国家科技进步二等奖。曾任中科院自动化所所长、中国科学院副院长、中国人工智能学会副理事长、中国自动化学会副理事长、中国计算机学会副理事长、国际模式识别学会第一副主席、IEEE生物识别理事会主席。
最新《深度学习自动驾驶》技术综述论文,28页pdf
专知会员服务
153+阅读 · 2020年6月14日
生物数据挖掘中的深度学习,诺丁汉特伦特大学
专知会员服务
67+阅读 · 2020年3月5日
新时期我国信息技术产业的发展
专知会员服务
70+阅读 · 2020年1月18日
报告 | 2020中国5G经济报告,100页pdf
专知会员服务
97+阅读 · 2019年12月29日
电力人工智能发展报告,33页ppt
专知会员服务
128+阅读 · 2019年12月25日
CCF发布2017-2018中国计算机科学技术发展报告
中国计算机学会
17+阅读 · 2018年11月7日
【学科发展报告】生物信息学
中国自动化学会
11+阅读 · 2018年10月22日
一篇文章了解生物特征识别六大技术
人工智能学家
5+阅读 · 2018年4月11日
微表情检测和识别的研究进展与趋势
中国计算机学会
15+阅读 · 2018年3月23日
【人工智能】谭铁牛院士:人工智能新动态
产业智能官
8+阅读 · 2018年1月5日
【深度】谭铁牛院士谈人工智能发展新动态
中国科学院自动化研究所
4+阅读 · 2017年12月28日
2017中国多媒体大会-智能媒体 创新未来
中国计算机学会
3+阅读 · 2017年8月21日
CoCoNet: A Collaborative Convolutional Network
Arxiv
6+阅读 · 2019年1月28日
Mobile big data analysis with machine learning
Arxiv
6+阅读 · 2018年8月2日
VIP会员
相关VIP内容
相关资讯
CCF发布2017-2018中国计算机科学技术发展报告
中国计算机学会
17+阅读 · 2018年11月7日
【学科发展报告】生物信息学
中国自动化学会
11+阅读 · 2018年10月22日
一篇文章了解生物特征识别六大技术
人工智能学家
5+阅读 · 2018年4月11日
微表情检测和识别的研究进展与趋势
中国计算机学会
15+阅读 · 2018年3月23日
【人工智能】谭铁牛院士:人工智能新动态
产业智能官
8+阅读 · 2018年1月5日
【深度】谭铁牛院士谈人工智能发展新动态
中国科学院自动化研究所
4+阅读 · 2017年12月28日
2017中国多媒体大会-智能媒体 创新未来
中国计算机学会
3+阅读 · 2017年8月21日
Top
微信扫码咨询专知VIP会员