ML&NLP顶会论文发表总榜:谷歌最狂,清北入前十,周明、张岳、刘挺华人前三

2020 年 2 月 8 日 AI科技评论

中美差距何止一丁点!


作者 | 丛末、蒋宝尚

编辑 | 贾伟

 
伦敦帝国理工学院机器学习和自然语言处理著名学者Marek Rei 教授从2016年起,每年都会对ML&NLP相关的会议论文进行统计和分析,并一年一度发表分析结果,目前已成为该领域权威性的报告内容。
 
近期,Marek Rei 再次发布2019年度机器学习和自然语言处理(ML&NLP)领域的年度统计。
 
从其分析中,我们可以清晰地看到在ML&NLP领域到底哪家单位最狂(非谷歌莫属),哪些单位实例雄厚,哪位学者研究突飞猛进,以及中美之间实力差距如何巨大。
 
根据Marek Rei教授的报告结果,我们一一进行分析!
 
注:报告统计数据来源于2019年机器学习和NLP相关的会议和期刊,其中统计范围包括ACL,EMNLP,NAACL,EACL,COLING,TACL,CL,CoNLL,NeurIPS,ICML,ICLR,AAAI。


1、NeurIPS指数式增长

 
几乎所有的会议都在2019年破了纪录,尤其是NeurIPS,曾指数上升趋势,根据数据显示其规模是最大的,而且领先AAAI接近300篇论文。当然,由于COLING和EACL在2019年没有举办,所以没有统计其数据。

2、谷歌发文最多,清北排名前十


2019年论文发表数量最多的机构是哪个呢?
其中谷歌顺利占据了领先地位,在各个领域都发表了大量的论文。例如,在 ICML 上,谷歌发表的论文数量是紧随其后的MIT 的两倍有余。值得一提的是,Marek 之前几年的统计中曾将DeepMind的论文也囊括在谷歌发表的论文之中,而在这一次则将DeepMind 的论文发表情况单独列出。
 
微软和 CMU 也发表了大量的研究成果,在所有会议上发表的论文数总量分别排在第二、第三。
 
清华大学、北京大学,则是中国进入各大会议论文数总量前十的两所高校 ,分别排在第七、第九,这也说明了近年来中国高校在学术论文上的影响力日益攀升。
 
3、八年争夺,微软、CMU总量第一,谷歌上升迅猛
 
接下来我们来看 2012年至2019年的总体数据。
 
虽然在2019年由谷歌占据主导地位,然而CMU 和微软在 2012年至2019年整场“马拉松式”的拉锯战中遥遥领先。并且值得一提的是,CMU 和微软在 2012年至2019年的论文发表数量完全相同,都为 1215篇论文。
 
排在两者其后的,是谷歌、斯坦福大学、MIT、IBM、伯克利大学、清华大学和北京大学。
 
如果我们再看下时间分段数据,我们会发现谷歌上升势头迅猛。虽然在 2012年至2016年,谷歌发表的论文总数要比CMU和微软的少得多,但是从2018年开始,它的论文发表数就开始远超包括CMU和微软在内的其他所有机构。
 
而所有排在前列的机构都呈上升趋势,在2019年发表的论文数量都远比此前发表的论文数量要多。
 
其中,中国机构表现最突出的清华大学,虽然论文发表数量在前几年中都一直较大地落后于国外机构,但在所有机构总体上升的趋势下,以高于平均上升趋势的幅度,终于在2019年拿下第七的排名,实属不易!

4、Sergey年产33篇论文,刘知远25篇位列华人第一

 
 
就个人作者而言,伯克利的 Sergey Levine 在2019年总共发表了33篇论文,其中在NeurIPS 上12篇,ICML上6篇,ICLR上15篇。其他比较高产的作者分别是:卡内基·梅隆的 Neubig 、蒙特利尔的 Yoshua Bengio 。清华大学的刘知远副教授以25篇排名第四(华人第一),其次是微软亚研院秦涛研究员(24篇)以及其同事刘铁岩(23篇)。
 
此外,北大的孙栩、加州大学圣塔芭芭拉分校的王威廉、腾讯AI Lab的Shuming Shi也不分上下,分别发表了21、21、20篇论文,排名前十以内。我们还注意到统计中包括了西湖大学的张岳(18篇)、微软的高剑峰(18篇)、Caiming Xiong(18篇)、哈工大刘挺(17篇)、北大赵东岩(18篇)等。
 

5、八年期,Yoshua Bengio晋级第一,周明、张岳、刘挺华人前三

 
 
将2012~2019年的数据作为一个整体来看,蒙特利尔的Yoshua Bengio已经取代了DeepMind的Chris Dyer成为最高产的作者。
 
位列第三的微软周明,第四的西湖大学张岳、华盛顿大学的  Noah A. Smith  以及位列第六的哈尔滨工业大学的刘挺有超过90篇论文产出。
 
这里需要强调,由于中国学者英文重名现象比较严重,为了统计方便,列表中删除了Yang Liu这一作者,因为有多人用此名字对论文署名,导致难以分辨。这导致清华大学计算机系的刘洋教授没有被统计排名。
 
 
 
以“年”为节点进行观察,Sergey Levine、Graham Neubig、Yoshua Bengio各自发表的文章的数量都比前几年要多,而且这几个人也都超过了Chris Dyer在2016年创下的记录。
 
另外,值得注意的是西湖大学张岳的论文发表在2015、2016年达到最高产,刘挺则是在2014年发表最多。
 

6、以一作之名,平均两个月可发一篇顶会论文

 
论文的第一作者通常是论文初稿的写作人,实验设计的主要参与者以及实验的主要执行者。一般能够在第一作者署名意味着在论文里面的贡献比较大。下面让我们看看论文第一作者的情况。
 
Gabriele Farina 是卡内基梅陇四年级的博士生,他以第一作者的身份发表论文6篇,其中有3篇被NeurIPS收录。威斯康星大学的Diakonikolas,杜克大学的 Hanrui Zhang、新加坡国立大学的Rui Zhang以及清华大学的武楚涵、北京大学的杨鹏程、普林斯顿的 Sanjeev Arora、微软的Zeyuan Allen-Zhu、IBM的 Mikhail Yurochkin也都有5篇论文是第一作者的署名。.
 
其中清华大学的武楚涵三篇文章发在了EMNLP上,北京大学的杨鹏程有五篇文章发表在了ACL上面。
 
纵观第一作者的论文,其中微软的Zeyuan Allen-Zhu、香侬科技李纪为、剑桥的Ivan Vulić和Ryan Co、亚马逊的Young-Bum Kim以及普林斯顿的Sanjeev Arora发表的论文最全面,涉及的顶会最多。
 
其中李纪为在七个会议上发表了论文,数量颇丰位列第一。
 

7、中美差距,何止一丁点!

 
分析2019年各国家和地区的论文发表数量,这还是首次。不可否认地,下面这张统计图展示了美国在 AI 领域“力压群山”的主导地位,不过中国、英国、德国和加拿大在该领域所发挥的影响力也不容小觑。
单独从各大会议会议上来看,中国在 AAAI 上的论文发表数量甚至与美国持平,可见中国研究者在 AAAI 上扮演着举足轻重的角色。另外中国在NeurIPS、EMNLP、ACL 等会议上的表现也非常出色,虽然可能不及在 AI 领域本就拥有先天优势的美国,但是遥遥领先于其他国家和地区。
 
下图展示了2012年至2019年各国家和地区的论文发表总数,整体排名和差距情况与2019年各国家和地区的发表论文数量差不多。
 
这些年来,美国的论文发表数量都一直远超其他国家和地区,并且现在还在加速拉大这一差距。而中国则在拼尽全力与美国匹敌,如今也以不断增大的幅度领先于美国以外的其他国家和地区。而英国虽然在论文发表数量以及增长幅度上不及美国和中国,也还是牢牢锁住了第三的位置。
 

美国—企业主导


由于美国2019年的论文发表数量在所有国家和地区中占据了遥遥领先的主导地位,因而以下这张美国2019年论文发表数量统计图整体情况与各大机构2019年论文发表数量统计图差不多,谷歌依旧遥遥领先,而微软和CMU 依旧排在第二、第三。
 
 

中国—高校领先


在中国,高校是论文发表的中坚力量,排在前十的有九所高校,仅有一家企业。
 
 
清华大学和北京大学分别锁住了第一、第二的宝座,二者在国际舞台上的表现同样不菲,是中国进入全球各机构论文发表排行榜前十仅有的两所高校,近年来对于 AI 领域的整体发展做出了较大的贡献和推动作用。
 
中国科学院大学、中国科学院、南京大学是论文发表数量排在第三至第五的高校,三所高校在 中国乃至全球 AI 领域扮演的角色同样出类拔萃,不仅有该领域的领军人物坐镇,如周志华等,还有为 AI 领域培养了一大批人才,如中科院计算所等机构。
 
而企业同样是中国论文发表的一只辅助力量,其中百度、阿里巴巴是其中表现比较出色的企业,分别成立了科研性的实验室,近年来也发表了大量的科研论文。
 

英国— DeepMind的传奇


在英国, 谷歌麾下的DeepMind 遥遥领先,其后是剑桥大学、牛津大学、爱丁堡大学、伦敦大学学院、帝国理工大学和阿兰图灵机构。
 
值得注意的是,阿兰图灵机构由剑桥、牛津、爱丁堡、华威和伦敦大学学院五所大学领导,所有该机构的论文发表数据与其他几所大学有一定交叉,因此具体数据比较模糊。
 
论文发表数量排在前七的机构中,剑桥大学和爱丁堡大学主要聚焦于 NLP 领域,而其他机构则主要专注于 ML 领域。
 

德国—NLP一家独大


在德国,达姆施塔特工业大学是论文发表数量最多的机构,尤其是在 NLP 领域,论文发表数量占德国论文发表总数的 2/3。罗伯特·博世有限公司总体论文发表数量排在第二,但 ML 领域的论文发表数量却是德国机构中最多的。
 
随后是萨尔大学、慕尼黑大学、图宾根大学、慕尼黑工业大学、马克斯普朗克智能系统研究所,分别排在第三至第第七的位置。
 

加拿大—三足鼎立


在加拿大,多伦多大学的论文发表数量是各机构中最出类拔萃的,排在第一,随后是蒙特利尔大学、Vector 人工智能研究院,分别排第二、第三。
 
滑铁卢大学是聚焦于 NLP 领域研究的唯一一所机构,而其他机构的论文大多数都发表在 ML 的相关会议上。
 

8、国际合作的多元化,中国还有待提升

 
Marek 也做了另外一项分析,即根据论文研究课题进行相似性分析,得出一些有意思的结论:
 
首先是组织之间的相似性,从下图可以看出,来自中国的大学主要集中在图的上部分,美国大学主要在图的右侧,欧洲则在左侧,企业在中间。因此可以看出研究课题即是非常具有区域性的,高校之间的相互合作受地域影响很大,而企业则相对就比较灵活。
 
相似性也可以应用到作者的分析上,下图的紧密度反映了研究者之间研究课题的相似性和合作频率。从图中可以看出秦涛(Tao Qin)和刘铁岩(Tie-Yan Liu)很近,这很容易理解,他们都在微软亚洲研究院工作。
 
也可以将相似性分析应用到国家和地区。不过鉴于每个国家都会有许多不同的主题,下面这个图可能更能代表它们的合作频率。 中国居于右下角,距离较近的是新加坡、澳大利亚、日本等,但距离其他国家和地区就比较远了 ,例如与台湾、韩国、法国等的合作就不是很紧密。而美国和英国在国际合作上相对比较多元化。

9、因崔斯汀的统计数据

最后,让我们再来看一些有趣的数据:
 
1)提及GitHub(就是指有代码开放)的论文占比:ACL 有70 %的论文、 EMNLP 有69%,的论文、 NAACL有 68%的论文、 ICLR 有56%的论文、 NeurIPS有 46%的论文、ICML 有45%的论文、 AAAI 有31%的论文提及GitHub。如此来看,NLP领域的论文似乎大多都免费开放了论文代码。
 
2)单篇论文作者最多有 24 位,论文是《 CoSQL: A Conversational Text-to-SQL Challenge Towards Cross-Domain Natural Language Interfaces to Databases》(地址:https://arxiv.org/abs/1909.05378)
 
3)标题最长的论文:《What if We Simply Swap the Two Text Fragments? A Straightforward yet Effective Way to Test the Robustness of Methods to Confounding Signals in Nature Language Inference Tasks》(地址:https://arxiv.org/abs/1809.02719)
 
4)标题最短的论文:《Graph U-Nets》(地址:https://arxiv.org/abs/1905.05178)

参考来源:
https://www.marekrei.com/blog/ml-and-nlp-publications-in-2019/ 




点击“阅读原文” 前往 问卷填写页面

登录查看更多
0

相关内容

张岳,目前是西湖大学的副教授。他的研究兴趣包括自然语言处理和计算金融。他一直致力于基础句法分析,文本生成,自然语言生成,机器翻译,信息抽取,情感分析和股票市场分析等工作。他获得了IALP 2017和COLING 2018的最佳论文奖。张岳担任Transactions of ACL编委,ACM TALLIP副主编和IEEE Transactions on Big Data副主编,以及COLING 2014/18,NAACL 2015/19,EMNLP 2015/17/19,ACL 2017/18/19的领域主席。张岳在NAACL2010,ACL 2014和EMNLP 2016/18做过讲习班。
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
ACL2020接受论文列表公布,571篇长文208篇短文
专知会员服务
66+阅读 · 2020年5月19日
【快讯】KDD2020论文出炉,216篇上榜, 你的paper中了吗?
专知会员服务
50+阅读 · 2020年5月16日
2018 ACL fellow 出炉,5人上榜,无中国学者
专知
4+阅读 · 2018年12月18日
【解读】2017年ML/NLP论文发表情况(第八期免费赠书活动来啦!)
Arxiv
4+阅读 · 2019年9月5日
The Evolved Transformer
Arxiv
5+阅读 · 2019年1月30日
Arxiv
4+阅读 · 2018年9月6日
Arxiv
22+阅读 · 2018年8月30日
VIP会员
相关VIP内容
Top
微信扫码咨询专知VIP会员