极市导读
OpenVINO是英特尔推出的一款全面的工具套件,用于快速部署应用和解决方案,支持计算机视觉的CNN网络结构超过150余种。本文展示了用OpenVINO部署Mask-RCNN实例分割网络的详细过程及代码演示。 >>加入极市CV技术交流群,走在计算机视觉的最前沿
OpenVINO支持Mask-RCNN与yolact两种实例分割模型的部署,其中Mask-RCNN系列的实例分割网络是OpenVINO官方自带的,直接下载即可,yolact是来自第三方的公开模型库。
这里以instance-segmentation-security-0050模型为例说明,该模型基于COCO数据集训练,支持80个类别的实例分割,加上背景为81个类别。
OpenVINO支持部署Faster-RCNN与Mask-RCNN网络时候输入的解析都是基于两个输入层,它们分别是:
im_data : NCHW=[1x3x480x480]
im_info: 1x3 三个值分别是H、W、Scale=1.0
输出有四个,名称与输出格式及解释如下:
name: classes, shape: [100, ]
预测的100个类别可能性,值在[0~1]之间name: scores: shape: [100, ]
预测的100个Box可能性,值在[0~1]之间name: boxes, shape: [100, 4]
预测的100个Box坐标,左上角与右下角,基于输入的480x480name: raw_masks, shape: [100, 81, 28, 28]
Box ROI区域的实例分割输出,81表示类别(包含背景),28x28表示ROI大小。
上面都是官方文档给我的关于模型的相关信息,但是我发现该模型的实际推理输raw_masks输出格式大小为:100x81x14x14,这个算文档没更新吗?
这边的代码输出层跟输入层都不止一个,所以为了简化,我用了两个for循环设置了输入与输出数据精度,然后直接通过hardcode来获取推理之后各个输出层对应的数据部分,首先获取类别,根据类别ID与Box的索引,直接获取实例分割mask,然后随机生成颜色,基于mask实现与原图BOX ROI的叠加,产生了实例分割之后的效果输出。完整的演示代码分为下面几步:IE引擎初始化与模型加载
InferenceEngine::Core ie;
std::vector<std::string> coco_labels;
read_coco_labels(coco_labels);
cv::RNG rng(12345);
cv::Mat src = cv::imread("D:/images/sport-girls.png");
cv::namedWindow("input", cv::WINDOW_AUTOSIZE);
int im_h = src.rows;
int im_w = src.cols;
InferenceEngine::CNNNetwork network = ie.ReadNetwork(xml, bin);
InferenceEngine::InputsDataMap inputs = network.getInputsInfo();
InferenceEngine::OutputsDataMap outputs = network.getOutputsInfo();
设置输入与输出数据格式
std::string image_input_name = "";
std::string image_info_name = "";
int in_index = 0;
for (auto item : inputs) {
if (in_index == 0) {
image_input_name = item.first;
auto input_data = item.second;
input_data->setPrecision(Precision::U8);
input_data->setLayout(Layout::NCHW);
}
else {
image_info_name = item.first;
auto input_data = item.second;
input_data->setPrecision(Precision::FP32);
}
in_index++;
}
for (auto item : outputs) {
std::string output_name = item.first;
auto output_data = item.second;
output_data->setPrecision(Precision::FP32);
std::cout << "output name: " << output_name << std::endl;
}
设置blob输入数据与推理
auto executable_network = ie.LoadNetwork(network, "CPU");
auto infer_request = executable_network.CreateInferRequest();
auto input = infer_request.GetBlob(image_input_name);
matU8ToBlob<uchar>(src, input);
auto input2 = infer_request.GetBlob(image_info_name);
auto imInfoDim = inputs.find(image_info_name)->second->getTensorDesc().getDims()[1];
InferenceEngine::MemoryBlob::Ptr minput2 = InferenceEngine::as<InferenceEngine::MemoryBlob>(input2);
auto minput2Holder = minput2->wmap();
float *p = minput2Holder.as<InferenceEngine::PrecisionTrait<InferenceEngine::Precision::FP32>::value_type *>();
p[0] = static_cast<float>(inputs[image_input_name]->getTensorDesc().getDims()[2]);
p[1] = static_cast<float>(inputs[image_input_name]->getTensorDesc().getDims()[3]);
p[2] = 1.0f;
infer_request.Infer();
解析输出结果
auto scores = infer_request.GetBlob("scores");
auto boxes = infer_request.GetBlob("boxes");
auto clazzes = infer_request.GetBlob("classes");
auto raw_masks = infer_request.GetBlob("raw_masks");
const float* score_data = static_cast<PrecisionTrait<Precision::FP32>::value_type*>(scores->buffer());
const float* boxes_data = static_cast<PrecisionTrait<Precision::FP32>::value_type*>(boxes->buffer());
const float* clazzes_data = static_cast<PrecisionTrait<Precision::FP32>::value_type*>(clazzes->buffer());
const auto raw_masks_data = static_cast<PrecisionTrait<Precision::FP32>::value_type*>(raw_masks->buffer());
const SizeVector scores_outputDims = scores->getTensorDesc().getDims();
const SizeVector boxes_outputDims = boxes->getTensorDesc().getDims();
const SizeVector mask_outputDims = raw_masks->getTensorDesc().getDims();
const int max_count = scores_outputDims[0];
const int object_size = boxes_outputDims[1];
printf("mask NCHW=[%d, %d, %d, %d]\n", mask_outputDims[0], mask_outputDims[1], mask_outputDims[2], mask_outputDims[3]);
int mask_h = mask_outputDims[2];
int mask_w = mask_outputDims[3];
size_t box_stride = mask_h * mask_w * mask_outputDims[1];
for (int n = 0; n < max_count; n++) {
float confidence = score_data[n];
float xmin = boxes_data[n*object_size] * w_rate;
float ymin = boxes_data[n*object_size + 1] * h_rate;
float xmax = boxes_data[n*object_size + 2] * w_rate;
float ymax = boxes_data[n*object_size + 3] * h_rate;
if (confidence > 0.5) {
cv::Scalar color(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
cv::Rect box;
float x1 = std::min(std::max(0.0f, xmin), static_cast<float>(im_w));
float y1 = std::min(std::max(0.0f,ymin), static_cast<float>(im_h));
float x2 = std::min(std::max(0.0f, xmax), static_cast<float>(im_w));
float y2 = std::min(std::max(0.0f, ymax), static_cast<float>(im_h));
box.x = static_cast<int>(x1);
box.y = static_cast<int>(y1);
box.width = static_cast<int>(x2 - x1);
box.height = static_cast<int>(y2 - y1);
int label = static_cast<int>(clazzes_data[n]);
std::cout <<"confidence: "<< confidence<<" class name: "<< coco_labels[label] << std::endl;
// 解析mask
float* mask_arr = raw_masks_data + box_stride * n + mask_h * mask_w * label;
cv::Mat mask_mat(mask_h, mask_w, CV_32FC1, mask_arr);
cv::Mat roi_img = src(box);
cv::Mat resized_mask_mat(box.height, box.width, CV_32FC1);
cv::resize(mask_mat, resized_mask_mat, cv::Size(box.width, box.height));
cv::Mat uchar_resized_mask(box.height, box.width, CV_8UC3,color);
roi_img.copyTo(uchar_resized_mask, resized_mask_mat <= 0.5);
cv::addWeighted(uchar_resized_mask, 0.7, roi_img, 0.3, 0.0f, roi_img);
cv::putText(src, coco_labels[label].c_str(), box.tl()+(box.br()-box.tl())/2, cv::FONT_HERSHEY_PLAIN, 1.0, cv::Scalar(0, 0, 255), 1, 8);
}
}
最终程序测试结果:
如果觉得有用,就请分享到朋友圈吧!
公众号后台回复“transformer”获取最新Transformer综述论文下载~
# CV技术社群邀请函 #
备注:姓名-学校/公司-研究方向-城市(如:小极-北大-目标检测-深圳)
即可申请加入极市目标检测/图像分割/工业检测/人脸/医学影像/3D/SLAM/自动驾驶/超分辨率/姿态估计/ReID/GAN/图像增强/OCR/视频理解等技术交流群
每月大咖直播分享、真实项目需求对接、求职内推、算法竞赛、干货资讯汇总、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企视觉开发者互动交流~