如今,深度学习已被广泛应用于图像分类和图像识别的问题中,取得了令人满意的实际效果,成为许多人工智能应用的关键所在.在对于模型准确率的不断探究中,研究人员在近期提出了“对抗样本”这一概念.通过在原有样本中添加微小扰动的方法,成功地大幅度降低原有分类深度模型的准确率,实现了对于深度学习的对抗目的,同时也给深度学习的攻方提供了新的思路,对如何开展防御提出了新的要求.在介绍对抗样本生成技术的起源和原理的基础上,对近年来有关对抗样本的研究和文献进行了总结,按照各自的算法原理将经典的生成算法分成两大类——全像素添加扰动和部分像素添加扰动.之后,以目标定向和目标非定向、黑盒测试和白盒测试、肉眼可见和肉眼不可见的二级分类标准进行二次分类.同时,使用MNIST数据集对各类代表性的方法进行了实验验证,以探究各种方法的优缺点.最后总结了生成对抗样本所面临的挑战及其可以发展的方向,并就该技术的发展前景进行了探讨.
http://www.jos.org.cn/jos/ch/reader/create_pdf.aspx?file_no=5884&journal_id=jos
专知便捷查看
便捷下载,请关注专知公众号(点击上方蓝色专知关注)
后台回复“GAE” 可以获取《对抗样本生成技术综述》专知下载链接索引