项目:Deepy
简介:它使用numpy进行计算。 API类似于PyTorch的API。
GitHub:
https://github.com/kaszperro/deepy
Demo:
在示例目录中有一个线性分类器,其准确率超过96%。
from deepy.module import Linear, Sequentialfrom deepy.autograd.activations import Softmax, ReLU
my_model = Sequential(
Linear(28 * 28, 300),
ReLU(),
Linear(300, 300),
ReLU(),
Linear(300, 10),
Softmax()
)
from deepy.module import Linear
from deepy.autograd.losses import CrossEntropyLoss, MSELoss
from deepy.variable import Variable
import numpy as np
my_model = Linear(10, 10)
loss1 = CrossEntropyLoss()
loss2 = MSELoss()
good_output = Variable(np.zeros((10,10)))
model_input = Variable(np.ones((10,10)))
model_output = my_model(model_input)
error = loss1(good_output, model_output)# now you can propagate error backwards:error.backward()
from deepy.module import Linear
from deepy.autograd.losses import CrossEntropyLoss, MSELoss
from deepy.variable import Variable
from deepy.autograd.optimizers import SGD
import numpy as np
my_model = Linear(10, 10)
loss1 = CrossEntropyLoss()
loss2 = MSELoss()
optimizer1 = SGD(my_model.get_variables_list())
good_output = Variable(np.zeros((10,10)))
model_input = Variable(np.ones((10,10)))
model_output = my_model(model_input)
error = loss1(good_output, model_output)
# now you can propagate error backwards:
error.backward()
# and then optimizer can update variables:
optimizer1.zero_grad()
optimizer1.step()
推荐阅读
12000+star的GANSynth,音乐与AI的完美结合
清华姚班出身,95后博士生陈立杰获理论计算机顶会最佳学生论文