Top 50机器学习项目实战总结

2018 年 2 月 6 日 深度学习世界


来源自人工智能头条(ID:AI_Thinker

整理 | 胡永波


根据《纽约时报》的说法,“在硅谷招募机器学习工程师、数据科学家的情形,越来越像NFL选拔职业运动员,没有苛刻的训练很难上场了。”毕竟,高达124472美元的平均年薪可不是谁想挣就能挣到的。


正如职业运动员每天都要训练一样,机器学习的日常练习也是工程师生涯得以大踏步前进的基本保障。仅2017年一年,机器学习领域总结此类实战经验的文章便已超过20000篇,该领域相关职位的热度自是可见一斑。


从中,我们筛选出50篇最好的经验和心得,囊括了机器学习在15大细分领域的各项典型应用:



  • 图像处理

  • 风格迁移

  • 图像分类

  • 面部识别

  • 视频稳像

  • 目标检测

  • 自动驾驶

  • 推荐系统

  • AI游戏

  • AI棋手

  • AI医疗

  • AI语音

  • AI音乐

  • 自然语言处理

  • 学习预测


当然,如果你只是一个刚要准备上手机器学习的新人,我们推荐你优先考虑以下两个高分实战课程:


A) AI游戏【推荐:5041;评分:4.7/5】



The Beginner’s Guide to Building an Artificial Intelligence in Unity


链接:

https://www.udemy.com/artificial-intelligence-in-unity/


B) 计算机视觉【推荐:8161;评分:4.5/5】



Deep Learning and Computer Vision A-Z™: Learn OpenCV, SSD & GANs and create image recognition apps


链接:

https://www.udemy.com/computer-vision-a-z/


而对具体的实战经验,接下来我们分领域一一来看:



图像处理


1、High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs


GitHub:

https://github.com/NVIDIA/pix2pixHD

论文:

https://arxiv.org/abs/1711.11585

博客:

https://tcwang0509.github.io/pix2pixHD/


来源:NVIDIA & UC Berkeley


2、Using Deep Learning to Create Professional-Level Photographs


GitHub:

https://github.com/google/creatism

论文:

https://arxiv.org/abs/1707.03491

博客:

https://research.googleblog.com/2017/07/using-deep-learning-to-create.html


来源:Google Research


3、High Dynamic Range (HDR) Imaging using OpenCV (Python)


项目:

https://www.learnopencv.com/high-dynamic-range-hdr-imaging-using-opencv-cpp-python/

课程主页:

https://courses.learnopencv.com/p/opencv-for-beginners


作者:Satya Mallick



风格迁移


4、Visual Attribute Transfer through Deep Image Analogy


GitHub:

https://github.com/msracver/Deep-Image-Analogy

论文:

https://arxiv.org/abs/1705.01088


来源:微软研究院 & 上海交大


5、Deep Photo Style Transfer


GitHub:

https://github.com/luanfujun/deep-photo-styletransfer

论文:

https://arxiv.org/abs/1703.07511


来源:Cornell University & Adobe


6、Deep Image Prior


GitHub:

https://github.com/DmitryUlyanov/deep-image-prior

论文:

https://arxiv.org/abs/1711.10925

博客:

https://dmitryulyanov.github.io/deep_image_prior


来源:SkolTech & Yandex & Oxford University



图像分类


7、Feature Visualization: How neural networks build up their understanding of images.


论文:

https://distill.pub/2017/feature-visualization/

代码:

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/deepdream/deepdream.ipynb

博客:

https://colah.github.io/


来源:Google Brain


8、An absolute beginner’s guide to Image Classification with Neural Networks


Github【4491收藏】:

https://github.com/humphd/have-fun-with-machine-learning

中文版:

https://github.com/humphd/have-fun-with-machine-learning/blob/master/README_zh-tw.md


来源:Mozilla


9、Background removal with deep learning


模型:

https://towardsdatascience.com/background-removal-with-deep-learning-c4f2104b3157

部署:

https://medium.com/@burgalon/deploying-your-keras-model-35648f9dc5fb


作者:Gidi Shperber



面部识别


10、Large Pose 3D Face Reconstruction from a Single Image via Direct Volumetric CNN Regression


GitHub:

https://github.com/AaronJackson/vrn

论文:

https://arxiv.org/abs/1703.07834

博客:

http://aaronsplace.co.uk/papers/jackson2017recon/

Demo:

http://cvl-demos.cs.nott.ac.uk/vrn/


作者:Aaron Jackson


11、Eye blink detection with OpenCV, Python, and dlib


项目:

https://www.pyimagesearch.com/2017/04/24/eye-blink-detection-opencv-python-dlib/

论文:

http://vision.fe.uni-lj.si/cvww2016/proceedings/papers/05.pdf


作者:Adrian Rosebrock


12、DEAL WITH IT in Python with Face Detection


GitHub:

https://github.com/burningion/automatic-memes

博客:

https://www.makeartwithpython.com/blog/deal-with-it-generator-face-recognition/


作者:Kirk Kaiser



视频稳像


13、Fused Video Stabilization on the Pixel 2 and Pixel 2 XL


博客:

https://research.googleblog.com/2017/11/fused-video-stabilization-on-pixel-2.html

测评:

https://www.dxomark.com/google-pixel-2-reviewed-sets-new-record-smartphone-camera-quality/


来源:Google Research



目标检测


14、How HBO’s Silicon Valley built “Not Hotdog” with mobile TensorFlow and Keras


博客:

https://medium.com/@timanglade/how-hbos-silicon-valley-built-not-hotdog-with-mobile-tensorflow-keras-react-native-ef03260747f3

项目:

https://github.com/kmather73/NotHotdog-Classifier


作者:Tim Anglade


15、Object detection: an overview in the age of Deep Learning


GitHub:

https://github.com/tryolabs/luminoth

论文:

https://tryolabs.com/blog/2017/08/30/object-detection-an-overview-in-the-age-of-deep-learning/


来源:Tryolabs


16、How to train your own Object Detector with TensorFlow’s Object Detector API


博客:

https://towardsdatascience.com/how-to-train-your-own-object-detector-with-tensorflows-object-detector-api-bec72ecfe1d9

数据集:

https://github.com/datitran/raccoon_dataset

产品化:

https://towardsdatascience.com/building-a-real-time-object-recognition-app-with-tensorflow-and-opencv-b7a2b4ebdc32

产品代码:

https://github.com/datitran/object_detector_app


作者:Dat Tran


17、Real-time object detection with deep learning and OpenCV


实战:

https://www.pyimagesearch.com/2017/09/18/real-time-object-detection-with-deep-learning-and-opencv/

入门:

https://www.pyimagesearch.com/2017/09/11/object-detection-with-deep-learning-and-opencv/

https://www.pyimagesearch.com/2016/01/04/unifying-picamera-and-cv2-videocapture-into-a-single-class-with-opencv/

https://www.pyimagesearch.com/2017/08/21/deep-learning-with-opencv/


作者:Adrian Rosebrock



自动驾驶


18、Self-driving Grand Theft Auto V with Python : Intro [Part I]


GitHub:

https://github.com/sentdex/pygta5

视频:

https://www.youtube.com/playlist?list=PLQVvvaa0QuDeETZEOy4VdocT7TOjfSA8a

博客:

https://pythonprogramming.net/game-frames-open-cv-python-plays-gta-v/


作者:Sentdex


19、Recognizing Traffic Lights With Deep Learning: How I learned deep learning in 10 weeks and won $5,000


GitHub:

https://github.com/davidbrai/deep-learning-traffic-lights

博客:

https://medium.freecodecamp.org/recognizing-traffic-lights-with-deep-learning-23dae23287cc

相关比赛:

https://www.getnexar.com/challenge-1/


作者:David Brailovsky



推荐系统


20、Spotify’s Discover Weekly: How machine learning finds your new music


实战:

https://hackernoon.com/spotifys-discover-weekly-how-machine-learning-finds-your-new-music-19a41ab76efe

演讲:

https://www.youtube.com/watch?v=A259Yo8hBRs

相关博客:

http://benanne.github.io/2014/08/05/spotify-cnns.html

https://notes.variogr.am/2012/12/11/how-music-recommendation-works-and-doesnt-work/


作者:Sophia Ciocca


21、Artwork Personalization at Netflix


博客:

https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76

论文:

https://arxiv.org/abs/1003.5956

原理介绍:

http://highscalability.com/blog/2017/12/11/netflix-what-happens-when-you-press-play.html


来源:Netflix



AI游戏


22、MariFlow — Self-Driving Mario Kart w/Recurrent Neural Network


项目文档:

https://docs.google.com/document/d/1p4ZOtziLmhf0jPbZTTaFxSKdYqE91dYcTNqTVdd6es4

视频:

https://www.youtube.com/watch?v=Ipi40cb_RsI


作者:SethBling


23、OpenAI Baselines: DQN


GitHub:

https://github.com/openai/baselines

项目主页:

https://blog.openai.com/openai-baselines-dqn/


来源:OpenAI


24、Reinforcement Learning on Dota 2 [Part II]


博客:

https://blog.openai.com/more-on-dota-2/

视频:

https://openai.com/the-international/


来源:OpenAI


25、Creating an AI DOOM bot


博客:

https://www.codelitt.com/blog/doom-ai/

工具:

http://vizdoom.cs.put.edu.pl/


作者:Abel Castilla


26、Phase-Functioned Neural Networks for Character Control


博客:

http://theorangeduck.com/page/phase-functioned-neural-networks-character-control

代码:

http://theorangeduck.com/media/uploads/other_stuff/pfnn.zip

论文:

http://theorangeduck.com/media/uploads/other_stuff/phasefunction.pdf

视频:

http://theorangeduck.com/media/uploads/other_stuff/phasefunction.mov


作者:Daniel Holden


27、The Game Imitation: Deep Supervised Convolutional Networks for Quick Video Game AI


论文:

https://arxiv.org/abs/1702.05663

视频:

https://www.youtube.com/playlist?list=PLegUCwsQzmnUpPwVv8ygMa19zNnDgJ6OC


来源:Stanford


28、Introducing: Unity Machine Learning Agents


GitHub:

https://github.com/Unity-Technologies/ml-agents

博客:

https://blogs.unity3d.com/cn/2017/09/19/introducing-unity-machine-learning-agents/

文档:

https://github.com/Unity-Technologies/ml-agents/tree/master/docs


来源:Unity



AI棋手


29、Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm


论文:

https://arxiv.org/abs/1712.01815

演讲:

http://ktiml.mff.cuni.cz/~bartak/ui_seminar/talks/2017ZS/KarelHa_AlphaZero.pdf

模型:

https://deepmind.com/research/alphago/alphazero-resources/

相关实现:

https://github.com/mokemokechicken/reversi-alpha-zero

https://web.stanford.edu/~surag/posts/alphazero.html


来源:Deepmind


30、AlphaGo Zero: Learning from scratch


博客:

https://deepmind.com/blog/alphago-zero-learning-scratch/

论文:

https://deepmind.com/documents/119/agz_unformatted_nature.pdf

棋谱:

http://www.alphago-games.com/


来源:DeepMind


31、How Does DeepMind’s AlphaGo Zero Work?


GitHub:

https://github.com/llSourcell/alphago_demo

视频:

https://www.youtube.com/watch?v=vC66XFoN4DE


作者:Siraj Raval


32、A step-by-step guide to building a simple chess AI


GitHub:

https://github.com/lhartikk/simple-chess-ai

博客:

https://medium.freecodecamp.org/simple-chess-ai-step-by-step-1d55a9266977

Wiki:

https://chessprogramming.wikispaces.com/


作者:Lauri Hartikka



AI医疗


33、CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning


项目主页:

https://stanfordmlgroup.github.io/projects/chexnet/

论文:

https://arxiv.org/abs/1711.05225

博客:

https://lukeoakdenrayner.wordpress.com/2017/11/18/quick-thoughts-on-chestxray14-performance-claims-and-clinical-tasks/


作者:吴恩达 & Stanford ML Group


34、Can you improve lung cancer detection? 2nd place solution for the Data Science Bowl 2017


Kaggle:

https://www.kaggle.com/c/data-science-bowl-2017

GitHub:

https://github.com/dhammack/DSB2017/

博客:

http://juliandewit.github.io/kaggle-ndsb2017/


作者:Julian de Wit


35、Improving Palliative Care with Deep Learning


项目主页:

https://stanfordmlgroup.github.io/projects/improving-palliative-care/

论文:

https://arxiv.org/abs/1711.06402


作者:吴恩达 & Stanford ML Group


36、Heart Disease Diagnosis with Deep Learning


GitHub:

https://github.com/chuckyee/cardiac-segmentation

博客:

https://blog.insightdatascience.com/heart-disease-diagnosis-with-deep-learning-c2d92c27e730

文章:

https://chuckyee.github.io/cardiac-segmentation/


作者:Chuck-Hou Yee



AI语音


37、Tacotron: A Fully End-to-End Text-To-Speech Synthesis Model 


GitHub:

https://github.com/Kyubyong/tacotron

论文:

https://arxiv.org/abs/1703.10135

项目主页:

https://google.github.io/tacotron/


来源:Google


38、Sequence Modeling with CTC


GitHub:

https://github.com/awni/speech

论文:

https://distill.pub/2017/ctc/


作者:Awni Hannun


39、Deep Voice: Real-time Neural Text-to-Speech

GitHub:

https://github.com/israelg99/deepvoice

论文:

https://arxiv.org/abs/1702.07825

博客:

http://research.baidu.com/deep-voice-production-quality-text-speech-system-constructed-entirely-deep-neural-networks/


来源:百度


40、Deep Learning for Siri’s Voice: On-device Deep Mixture Density Networks for Hybrid Unit Selection Synthesis


博客:

https://machinelearning.apple.com/2017/08/06/siri-voices.html


来源:Apple



AI音乐


41、Computer evolves to generate baroque music!


视频:

https://www.youtube.com/watch?v=SacogDL_4JU

相关博客:

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


作者:Cary Huang


42、Make your own music with WaveNets: Making a Neural Synthesizer Instrument


GitHub:

https://github.com/tensorflow/magenta/tree/master/magenta/models/nsynth

论文:

https://arxiv.org/abs/1704.01279

博客:

https://magenta.tensorflow.org/nsynth-instrument


作者:Jesse Engelberg



自然语言处理


43、Learning to communicate: Agents developing their own language


博客:

https://blog.openai.com/learning-to-communicate/

论文:

https://arxiv.org/abs/1703.04908


来源:OpenAI


44、Big Picture Machine Learning: Classifying Text with Neural Networks and TensorFlow


GitHub:

https://github.com/dmesquita/understanding_tensorflow_nn

博客:

https://medium.freecodecamp.org/big-picture-machine-learning-classifying-text-with-neural-networks-and-tensorflow-d94036ac2274


作者:Déborah Mesquita


45、A novel approach to neural machine translation 


GitHub:

https://github.com/facebookresearch/fairseq

论文:

https://arxiv.org/abs/1705.03122

博客:

https://code.facebook.com/posts/1978007565818999/a-novel-approach-to-neural-machine-translation


来源: Facebook


46、How to make a racist AI without really trying


Jupyter Python:

https://gist.github.com/rspeer/ef750e7e407e04894cb3b78a82d66aed

博客:

https://blog.conceptnet.io/2017/07/13/how-to-make-a-racist-ai-without-really-trying/


作者:Rob Speer



学习预测


47、Using Machine Learning to Predict Value of Homes On Airbnb


博客:

https://medium.com/airbnb-engineering/using-machine-learning-to-predict-value-of-homes-on-airbnb-9272d3d4739d

中文:

https://github.com/xitu/gold-miner/blob/master/TODO/using-machine-learning-to-predict-value-of-homes-on-airbnb.md


作者:Robert Chang


48、Engineering Uncertainty Estimation in Neural Networks for Time Series Prediction at Uber


论文:

https://arxiv.org/abs/1709.01907

博客:

https://eng.uber.com/neural-networks-uncertainty-estimation/


来源:Uber


49、Using Machine Learning to make parking easier


博客:

https://research.googleblog.com/2017/02/using-machine-learning-to-predict.html

产品介绍:

https://blog.google/products/maps/know-you-go-parking-difficulty-google-maps/


来源:Google


50、How to Predict Stock Prices Easily — Intro to Deep Learning #7


视频:

https://www.youtube.com/watch?v=ftMq5ps503w

说明:

https://github.com/llSourcell/How-to-Predict-Stock-Prices-Easily-Demo

GitHub:

https://github.com/erilyth/DeepLearning-Challenges/tree/master/Image_Classifier


作者:Siraj Raval



原文链接:

https://github.com/Mybridge/learn-machine-learning

https://medium.mybridge.co/learn-to-build-a-machine-learning-application-from-top-articles-of-2017-cdd5638453fc



点击下方“阅读原文”了解【人工智能实验平台】
↓↓↓
登录查看更多
5

相关内容

一个跨平台的计算机视觉处理库,全称是Open Source Computer Vision。
专知会员服务
109+阅读 · 2020年3月12日
【2020新书】数据科学:十大Python项目,247页pdf
专知会员服务
212+阅读 · 2020年2月21日
【机器学习课程】Google机器学习速成课程
专知会员服务
164+阅读 · 2019年12月2日
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
233+阅读 · 2019年10月26日
【推荐系统/计算广告/机器学习/CTR预估资料汇总】
专知会员服务
87+阅读 · 2019年10月21日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
2019热门开源机器学习项目汇总
专知
9+阅读 · 2020年1月3日
2019年度机器学习49个顶级工程汇总
专知
5+阅读 · 2019年2月6日
机器学习开源项目Top10
AI100
4+阅读 · 2019年1月20日
年度大盘点:机器学习开源项目及框架
云栖社区
3+阅读 · 2018年12月17日
2018年度最牛逼的30个机器学习项目!
大数据技术
3+阅读 · 2018年12月14日
3月份Github上最热门的数据科学和机器学习项目
大数据技术
7+阅读 · 2018年4月23日
推荐 | 机器学习开源项目 Top 10
AI100
3+阅读 · 2018年3月21日
资源 | 2017年GitHub中最为流行的30个开源机器学习项目
黑龙江大学自然语言处理实验室
3+阅读 · 2018年1月8日
Anomalous Instance Detection in Deep Learning: A Survey
Arxiv
12+阅读 · 2018年9月5日
Arxiv
6+阅读 · 2018年4月4日
Arxiv
3+阅读 · 2018年1月10日
VIP会员
相关VIP内容
专知会员服务
109+阅读 · 2020年3月12日
【2020新书】数据科学:十大Python项目,247页pdf
专知会员服务
212+阅读 · 2020年2月21日
【机器学习课程】Google机器学习速成课程
专知会员服务
164+阅读 · 2019年12月2日
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
233+阅读 · 2019年10月26日
【推荐系统/计算广告/机器学习/CTR预估资料汇总】
专知会员服务
87+阅读 · 2019年10月21日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
2019热门开源机器学习项目汇总
专知
9+阅读 · 2020年1月3日
2019年度机器学习49个顶级工程汇总
专知
5+阅读 · 2019年2月6日
机器学习开源项目Top10
AI100
4+阅读 · 2019年1月20日
年度大盘点:机器学习开源项目及框架
云栖社区
3+阅读 · 2018年12月17日
2018年度最牛逼的30个机器学习项目!
大数据技术
3+阅读 · 2018年12月14日
3月份Github上最热门的数据科学和机器学习项目
大数据技术
7+阅读 · 2018年4月23日
推荐 | 机器学习开源项目 Top 10
AI100
3+阅读 · 2018年3月21日
资源 | 2017年GitHub中最为流行的30个开源机器学习项目
黑龙江大学自然语言处理实验室
3+阅读 · 2018年1月8日
Top
微信扫码咨询专知VIP会员