刚刚,旷视开源深度学习框架「天元」:Brain++内核,研发和落地都在用;孙剑:COCO三连冠背后的秘密武器

2020 年 3 月 25 日 量子位
乾明 发自 凹非寺 
量子位 报道 | 公众号 QbitAI

耗费资源打造优化6年,迭代到8.0版本,旷视技术体系的关键支柱,现在正式对外开源。

刚刚,深度学习驱动之下最早创业的中国AI独角兽旷视,宣布开源自研深度学习框架MegEngine(Brain++核心组件之一),中文名天元——取自围棋棋盘中心点的名称。

在发布会上,旷视联合创始人、CTO唐文斌透露,这也是向AlphaGO致敬。

与之前开源的“前辈”框架们不同,旷视开源的AI框架,是其创业、壮大和屡屡刷新业内纪录的核心驱动引擎。

所以旷视天元,因何开源?有啥目标?会给业界带来什么变化?

在介绍天元开源时,唐文斌介绍了“天元”的另一层含义:万物的基础。

他说:“我们希望能够通过天元这样一个深度学习框架,能够作为中国人工智能的一个基石,能够帮助中国人工智能做得更好。”

而聚焦到旷视本身,开源亦是其“基于算法向产业方向升级,打造AI基础设施”战略的延伸,近年一连串动作,都是该方向上的不断落子。

智能化时代的生产力工具

2019年初,旷视发布AIoT 操作系统“河图”,应用于物流场景,让更多硬件可以接入,并实现平台统一控制、调度。

与此同时,这套系统还能让更多的生态伙伴可以参与其中,开发属于自己的智能物流解决方案,创造场景的价值。

“河图”发布之后,虽然平台软件的产生得以让更多的硬件接入,让 AI+ 场景越发丰富。但旷视发现,更大的需求出现了——场景具有无限性。

他们认为,这导致了场景对算法需求的无限性,但没有任何一家企业可以创造所有算法。要解决这个矛盾,激发整个产业算法创新能力,就需要一套面向所有人开放的 AI 基础设施。

那什么是 AI 基础设施?

唐文斌在发布会上说,只有 AI 芯片平台和 AI 生产力平台能够被称为 AI 基础设施。

其中,AI 的计算需要 AI 芯片平台承载不容置疑,而 AI 生产力则需要来自于“框架”。

之前,在观察评估AI框架时,我们也曾有过更宏观的视角:

从人类社会生产大爆发的三大时代来审视,生产力的重点是规模化工具的重要性。农业文明时代的核心,是耕犁的使用,让耕种有了规模化发展的可能。

工业革命的关键,是蒸汽机的启用和推广,让机器真正可以规模化部署应用,替代手工作坊。而智能化时代中,如何实现数据规模化运用和处理,成为竞争力关键。

通常情况下,我们把技术作为第一生产力,但更多聚焦于技术,反而会忽略了规模化运用“技术”的工具。

如果回顾起来,就会发现这样一个规律,谁掌握时代生产工具,谁就能掌握生产力,从而有可能成为时代红利的最大受益者,在竞争中占得先机。

按照产业经济学的理论,生产效率的本质,在于减少消耗、增大产出,从而利用结余推动更进一步的发展,并在每个增长瓶颈中抓住产业变革奇点,实现范式转移和产能跃迁,从而真正穿越周期。

具体到AI驱动的智能化时代当下,打造人工智能算法的框架,无疑是减少消耗的工具:规模化AI算法落地推动产出,各行各业将进入一场新的能效变革战争。

所以在产业智能化的大势下,算法开发框架的意义也进一步凸显,更是成为数字基础设施建设、产生AI生产力的核心工具之一。

从这个角度来看,旷视开源天元既是为技术共同体贡献一份力量,也是其引入开放性创新、打造Brain++ 生产力平台、角逐产业智能时代的战略所向。

唐文斌认为,就任何一个产业来说,只有引起标准化、规模化的连锁反应才能迎来真正繁荣。

这就是天元的设计理念,直接反映在框架设计的特性和能力中。

天元框架的四大特性

天元是旷视Brain++的核心组件之一,主要功能:帮助开发者用户借助友好的编程接口,进行大规模深度学习模型训练和部署。

根据旷视给出的官方总结,天元具备训练推理一体化,动静合一,兼容并包和灵活高效四个特点,使其在于其他主流深度学习框架对比中,不落下风。

所谓训练推理一体化,指的是通过天元训练得到的模型和产物,可以直接进行用于产品的推理、封装。在部署时,它还能帮助开发者自动删除冗余代码,实现模型自动优化。

动静合一,是指天元集成了“静态图性能高、占用资源少且易于部署”、“动态图简单灵活、方便调试且易于上手”的优点。

在充分利用动态图模型训练优势时,开发者可以通过天元动静态一键转换功能,以静态图的形式完成生产和部署;此外,天元还支持动静态的混合编程,灵活性更强。

在发布会上,旷视研究院高级技术总监田忠博给出了一个例子。

他说:“在使用天元动态图能力的时候,大概可以在一个32Batch左右进行计算,如果把它转换到静态图的情况下,它就可以支持到64Batch的水平。”

但这不是全部。

他还介绍称:“如果大家希望在这种情况下,训练更大的Batch,训练更大的模型,完全可以采用亚线性的自动内存优化技术,天元可以在几乎无降低计算速度前提下,达到256Batch训练能力。”

而且,随着你的模型变大、变深,它的效果越好。

田忠博透露,旷视内部有一些评测上,可以实现某些大模型20倍以上的内存节省,速度几乎不变。

兼容并包,则体现在天元的易用性上,其具备Pythonic的API——习惯用Python进行传统机器学习的开发者,学习成本更低、易于上手。而且,天元还支持PyTorch Module功能,可以直接导入模型,迁移成本低且极大方便模型复现。

灵活高效,专指天元具备很强的多平台多设备适应能力,能通过类似汇编和指令重排等技术,使得天元内置算子能够在推理或生产环境中充分利用多核优势,灵活调用设备的计算力,尤其适用于大模型算法训练。

那么问题来了,天元有如此能力与特性,关键秘诀是什么?

架构设计。

天元框架的整体架构

从架构上来看,天元具体分为计算接口、图表示、优化与编译、运行时管理和计算内核五层。

在顶层的计算接口上,天元配置C++和Python接口,用以解决框架学习接口各异,模型难以复现的问题;

在图表示层,天元内置动静态转换功能,支持开发者混合使用动态图和静态图模式进行编程;

在优化与编译层,天元构建核心计算图支持用户高效交互,进一步优化和编译API表达的计算,具体包括自动求导器、图优化和图编译功能;

运行时设备管理中,天元配置计算调度和内存管理两个模块,通过计算调度模块将设备抽象为执行流,并通过调度器实现智能调度。

内存优化上,天元同时采用了动态、静态内存分配并存的方式,支持自动亚线性内存优化,同时,旷视独创了自动的亚线性内存管理优化器,使天元能够得到更好的内存优化效果。

天元的底层(计算内核)拥有一个基于异构架构,内置高效计算机视觉算子的计算内核,具备X86,CUDA等主流硬件设备智能适配能力。

其可以通过内置算法,根据设备本身启发式地选择最优内核,也能让用户自己选择最适合的内核进行计算。

此外,天元配备了高性能异构通信库,支持用户在不同机器和计算卡之间进行高性能的通信,以实现多机多卡、大规模、分布式的算法训练。

如此框架,用到实际中效果会怎样呢?

开头就有说,旷视创业发展至今,成为全球估值最高的AI独角兽之一,背后离不开这个框架的强力驱动。

旷视核心中的核心

过去的6年中,天元框架作为旷视“真核”Brain++的一部分,与深度学习云计算平台(MegCompute)、以及数据管理平台(MegData)一起,支撑旷视全部业务。

旷视首席科学家、研究院院长孙剑说:“旷视1400名研发人员,全部使用天元框架,并将其应用到了上百个产品、几十种计算平台上。”

在孙剑看来,天元与谷歌推出的TensorFlow、Facebook推出的PyTorch有很大不同。

“AI公司的深度学习框架和平台公司的深度学习框架,考虑的点、方位、方向上都不同。”他说,“我们的深度学习框架(天元)生长在旷视的核心业务上,我们希望能够对特定方向上的AI开发者带来好处,希望他们可以同时或者使用不同的框架来解决不同的问题。”

比如在主流的计算机视觉模型(ResNet 18、ResNet50、MobileNet v2和 ShuffleNet V2)上,天元的训练速度不同于其他主流框架。

在这次开源中,围绕着天元框架,旷视还发布了一系列开发工具。

比如开箱即用的在线深度学习工具MegStudio,能够让开发者快速体验天元的框架,训练模型。天元还上线了囊括顶尖算法的模型中心ModelHub,其中包括旷视研究院最新的技术、研究成果。

与此同时,旷视也将分布式计算中的数据并行和模型并行方式应用到了天元中,进一步提升大规模图像数据处理和模型训练的效率。

面向更大范围、更多种类设备上的部署,天元提供了神经架构搜索、网络剪枝和构建低比特的小型神经网络等功能。

而且,天元中还集成了旷视最新的 AutoML 技术,自动化设计深度学习算法的各个关键环节,让算法来训练算法,让AI来创造AI,降低上手门槛。

以上种种能力,无不证明着,天元正是旷视核心中的核心,压箱底的本领。

最直接的例子,莫过于旷视持续三年拿下COCO重头戏“物体检测”冠军,统治力堪比“中国乒乓球队”。在2019年ICCV夺冠后,孙剑再次感谢Brain++,称一连串成绩的取得,离不开背后强大的Brain++。

而承担着Brain++平台生产/开发算法任务的天元,更是发挥着重要的作用。

但就是如此利器重器、核心中的核心,旷视现在开源了。

why?

历时6年打造优化,开源是“无限游戏”

对于旷视来说,直接推动开源的因素有两个:一是技术是否成熟,二是时机是否得当。

旷视联合创始人、CEO印奇称,这直接与AI行业的发展有关系。

他说,当算法变成改造甚至颠覆软件行业的力量时,最后核心就是看这些AI的公司有没有平台化的能力,即“能够批量、高效、比竞争对手更及时地供应优质算法”。

而这种竞争的决定性因素,就在于是否掌握了核心引擎的框架。

所以,旷视在2014年就自主研发了“天元”框架,这比TensorFlow开发的时间还要早。

2015年年中,天元框架在旷视全公司推广,其业务线上的模型全部换成了自研框架训练出来的版本。

同年11月份,谷歌开源TensorFlow后,虽然一度让旷视内部对于是否继续研发深度学习框架产生动摇。但经过大规模评测后,旷视还是走向了自研的道路——毕竟刚刚问世的TensorFlow效果并不理想。

行至今日,天元不断完善,Brain++逐步成型,旷视进一步变强,角逐的市场也正在扩大,开源更是成了其作为行业领头公司的担当。

“我们认为其实还是应该为中国整个这样一个AI的大的生态去贡献点力量,这个力量能多大我自己也不知道,但我觉得这是应该做的,”印奇说。

在宣布天元开源的发布会上,唐文斌也进一步透露了旷视对天元的期待,希望通过开源,能跟更多的人一起,用AI的力量创造更多的价值。

当然,旷视作为一家AI创业公司,怎么样既保证自己的核心业务不受到损害,又能够把开源的能力放到最大化?这也是外界关注天元是否开源,如何开源的核心问题。

从天元的开发路线图中,能够看出旷视对待这些问题的态度,不仅没有回避,而且颇显坦诚。

唐文斌坦言,这次开源的天元是Alpha版本,基于Apache License2.0,代码大概有35万行,囊括了大多数应用场景。

接下来的6月份,旷视将发布天元的Beta版本,增加对ARM系列CPU支持、更多加速设备支持、量化和低比特计算支持等功能。

9月份,旷视会发布正式1.0版本,全面支持主流计算设备,升级动态计算能力,优化训练推理全流程使用体验等。

唐文斌说,也希望更多人能够对我们的产品提出批评给出建议,一起来贡献code,跟大家一起来共建更好的天元。

但不管怎样,自此之后,开发者们在选用框架打造模型算法时,多了一个不容忽视的、有保障的选择。

另外,对于整个AI行业而言,竞争维度也进一步提高。开源竞争已不再是某个算法、模型的单点开源,而是变成了框架之战、平台之争,生态集团比拼。

正如唐文斌所说:“AI能够赋能的行业和场景非常多,这是一个无限游戏”。

在这个游戏里,旷视因Brain++强大,Brain++因天元走向无处不在,AI复兴成就了旷视——这个AI创业上市第一股,而旷视现在则通过天元,把自己的AI影响力和能力,扩散向更广阔的智能化时代。

量子位也问 CEO印奇,天元开源,内部小目标是什么?

印奇答:中国开发者中口碑最好的框架。

现在,天元正式开门,迎接检验和评价。

传送门:

天元 MegEngine 深度学习框架官方网站:

https://megengine.org.cn/

GitHub 开源地址:

https://github.com/MegEngine/MegEngine

作者系网易新闻·网易号“各有态度”签约作者


3月25日晚20:00,地平线BPU算法负责人罗恒,将分享地平线BPU的设计与演进、MLPerf基准测试的理想性与局限性、提出当面AI芯片面临的机遇与挑战
戳下方二维码即可报名、加交流群~

今晚直播 | 地平线BPU重新定义极致效能


量子位 QbitAI · 头条号签约作者


վ'ᴗ' ի 追踪AI技术和产品新动态


喜欢就点「在看」吧 !



登录查看更多
0

相关内容

Brain++是旷视自主研发的新一代AI生产力平台,包括深度学习框架MegEngine(旷视天元)、深度学习云计算平台MegCompute以及数据管理平台MegData,将算法、算力和数据能力融为一体。依托于Brain++,旷视可针对不同垂直领域的碎片化需求定制丰富且不断增长的算法组合,向客户提供包括算法、平台及应用软件、硬件设备和技术服务在内的全栈式人工智能解决方案。
《人工智能2020:落地挑战与应对 》56页pdf
专知会员服务
195+阅读 · 2020年3月8日
阿里巴巴达摩院发布「2020十大科技趋势」
专知会员服务
106+阅读 · 2020年1月2日
【德勤】中国人工智能产业白皮书,68页pdf
专知会员服务
303+阅读 · 2019年12月23日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
谷歌之困:谷歌为什么做不好硬件?
ZEALER订阅号
3+阅读 · 2019年11月21日
全球最大AI独角兽诞生中国,商汤科技凭什么?
商业周刊中文版
5+阅读 · 2018年4月9日
抖音的 2017 和它背后的黑科技
PingWest品玩
8+阅读 · 2018年1月4日
京东与斯坦福达成战略合作 携手推进AI研究
京东大数据
3+阅读 · 2017年11月28日
高额融资「狂欢」背后的旷视科技
机器之能
4+阅读 · 2017年11月1日
【人工智能架构】深度解密京东登月平台基础架构
产业智能官
11+阅读 · 2017年9月26日
2017人工智能创新公司50强出炉 旷视(Face++)上榜
Megvii旷视科技
3+阅读 · 2017年7月10日
Panoptic Feature Pyramid Networks
Arxiv
3+阅读 · 2019年1月8日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
3+阅读 · 2018年3月21日
Arxiv
7+阅读 · 2018年3月19日
Arxiv
7+阅读 · 2018年1月24日
VIP会员
相关资讯
谷歌之困:谷歌为什么做不好硬件?
ZEALER订阅号
3+阅读 · 2019年11月21日
全球最大AI独角兽诞生中国,商汤科技凭什么?
商业周刊中文版
5+阅读 · 2018年4月9日
抖音的 2017 和它背后的黑科技
PingWest品玩
8+阅读 · 2018年1月4日
京东与斯坦福达成战略合作 携手推进AI研究
京东大数据
3+阅读 · 2017年11月28日
高额融资「狂欢」背后的旷视科技
机器之能
4+阅读 · 2017年11月1日
【人工智能架构】深度解密京东登月平台基础架构
产业智能官
11+阅读 · 2017年9月26日
2017人工智能创新公司50强出炉 旷视(Face++)上榜
Megvii旷视科技
3+阅读 · 2017年7月10日
相关论文
Top
微信扫码咨询专知VIP会员