几个Python“小伎俩”

2020 年 2 月 8 日 AINLP

写在前面

我又来更新啦~今天一起回顾下Python Cookbook,全书是以问答对的形式展开,这是我很久之前看的笔记。Cookbook不算是入门书,更像是一本工具书,既然有基础了那就没必要一个个点去看,建议是需要用到那部分就把那块的知识点技巧翻一遍。下面大噶自己查漏补缺吧!

Chap1 数据结构与算法

从任意长度的可迭代对象中分解元素

*表达式可以用来将一个含有N个元素的数据结构类型分解成所需的几部分。
例如grades保存了100个成绩数据而我们只关心首末两个成绩,就可以把中间的所有成绩保存到一个列表里面,如下:

first, *middle, last = grades
保存最后N个元素
  • collection.deque(maxlen=N)创建了一个固定长度的队列,当有新记录加入而队列已满时会自动移除最老的那条记录。
  • 若不指定队列的大小,也就得到了一个无界限的队列;
  • deque支持从队列两端添加或弹出元素
from collection import deque
q = deque()
q.append(1)
q.append(2)
q.append(3)
q.appendleft(4)
q.pop()
q.popleft()
找到最大或最小的N个元素
  • heapq模块中有两个函数:nlargest()和nsmallest()
import heapq

nums = [1, 8, 2, 23, 7, -4, 18, 23, 42, 37, 2]
print(heapq.nlargest(3, nums))
out: [42, 37, 23]
print(heapq.nsmallest(3,nums))
out: [-4, 1, 2]
  • 这两个函数还可以接受一个参数key
In [1]: portfolio = [
...: {'name': 'IBM', 'shares': 100, 'price': 91.1},
...: {'name': 'AAPL', 'shares': 50, 'price': 543.22},
...: {'name': 'FB', 'shares': 200, 'price': 21.09},
...: {'name': 'HPQ', 'shares': 35, 'price': 31.75},
...: {'name': 'YHOO', 'shares': 45, 'price': 16.35},
...: {'name': 'ACME', 'shares': 75, 'price': 115.65}
...: ]

cheap = heapq.nsmallest(3, portfolio, key=lambda s: s['price'])
cheap
out:
[{'name': 'YHOO', 'price': 16.35, 'shares': 45},
{'name': 'FB', 'price': 21.09, 'shares': 200},
{'name': 'HPQ', 'price': 31.75, 'shares': 35}]

让字典保持有序

  • collection模块的OrderedDict会按照元素初始添加的顺序进行操作;
  • 其内部维护了一个双向链表,它会根据元素加入的顺序来排列键的位置。因此OrderedDict的大小是普通字典的2倍多。

字典的计算问题

  • 利用zip()将字典的键与值反转

找出序列中出现次数最多的元素

  • collection模块的Counter类
  • 并且Counter类有一个非常方便的most_common(n)方法可以直接得到出现次数最多的前几位
from collections import Counter
words = [一系列单词组成的列表]
word_counts = Counter(words)
top_3 = word_counts.most_common(3)

通过公共键对字典列表排序

  • operator模块的itermgetter函数
from operator import itemgetter

In [26]: rows = [
...: {'fname': 'Brian', 'lname': 'Jones', 'uid':1003},
...: {'fname': 'David', 'lname': 'Beazley', 'uid':1002},
...: {'fname': 'John', 'lname': 'Cleese', 'uid':1001},
...: {'fname': 'Big', 'lname': 'Jones', 'uid':1004}
...: ]

itemgetter('fname')
Out[31]: <operator.itemgetter at 0x7f01606657d0>

rows_by_frame = sorted(rows, key=itemgetter('fname'))
Out[30]:
[{'fname': 'Big', 'lname': 'Jones', 'uid': 1004},
{'fname': 'Brian', 'lname': 'Jones', 'uid': 1003},
{'fname': 'David', 'lname': 'Beazley', 'uid': 1002},
{'fname': 'John', 'lname': 'Cleese', 'uid': 1001}]
  • itermgetter()函数还可以接受多个键
rows_by_frame = sorted(rows, key=itemgetter('fname','lname'))

Chap3 数字、日期和时间

对数值进行取整

  • 使用内建的round(value, ndigits)函数
>>> round(1.23, 1)
1.2
>>> round(1.27, 1)
1.3
>>> round(162773, -1)
162770
  • 当某个值恰好等于两个整数间的一半时,取整操作会去到离该值最近的那个偶数上。如1.5和2.5都会取整到2
  • round()中的ndigits可以是负数,在这种情况下会相应地取整到十位、百位。。。

对数值做格式化输出

  • 使用内建的format()函数
>>>x = 123.456
>>>format(x, '0.2f')
123.46

二进制、八进制和十六进制转换

  • 要将一个整数转换为二进制,使用bin()
  • 要将一个整数转换为八进制,使用oct()
  • 要将一个整数转换为十六进制,使用hex()

随机选择

  • random.choice()可以从序列中随机挑选出元素
>>>import random
>>>values = [1,2,3,4,5,6]
>>>random.choice(values)
4
>>>random.choice(values)
2
  • random.shuffle()可以在序列中原地打乱元素的顺序
>>>random.shuffle(values)
>>>values
[2,4,3,1,6,5]
  • random.sample()可以取样出N个元素
>>>random.sample(values, 2)
[6, 2]

时间换算

  • datatime模块可以用来完成不同时间单位间的换算。例如要表示一个时间间隔,可以创建一个timedelta实例
from datetime import timedelta

In [33]: a = timedelta(days=2, hours=6)
In [34]: b = timedelta(hours=4.5)
In [35]: c = a + b
In [36]: c.days
Out[36]: 2
In [37]: c.seconds
Out[37]: 37800
In [38]: c.seconds/3600
Out[38]: 10.5
In [39]: c.total_seconds() / 3600
Out[39]: 58.5

Chap4 迭代器和生成器

手动访问迭代器中的元素

with open('/etc/passwd') as f:
try:
while True:
line = next(f)
print(line, end='')
except StopIteration:
pass

委托迭代

  • 对自定义的容器对象,其内部持有一个列表丶元组或其他的可迭代对象,我们想让自己的新容器能够完成迭代操作。一般来说,我们所要做的就是定义一个__iter__()方法,将迭代请求委托到对象内部持有的容器上。
class Node:
def __init__(self, value):
Self._value = vaule
self._children = []
def __repr__(self):
return 'Node({!r})'.format(self._value)
def __iter__(self):
return iter(self._children)

在这个例子中,iter()方法将迭代请求转发给对象内部持有的_children属性上。

用生成器创建新的迭代模式

  • 函数中只要出现了yield语句就会将其转变成一个生成器
def frange(start, stop, increment):
x = start
while x < stop:
yield x
x += increment
  • 注意生成器只在响应迭代操作时才运行

对迭代器做切片操作

  • itertool.islice() 可以对迭代器和生成器做切片操作
In [3]: def count(n):
...: while True:
...: yield n
...: n += 1
...:
In [5]: c = count(0)
In [6]: c
Out[6]: <generator object count at 0x7f92899b3c80>
----> 1 c[0]
TypeError: 'generator' object has no attribute '__getitem__'

import itertools
In [10]: for x in itertools.islice(c, 10, 20):
...: print(x)
10
11
12
13
14
15
16
17
18
19

跳过可迭代对象中的前一部分元素

  • itertools.dropwhile() 函数会 丢弃掉序列中的前面几个元素
    例如,我们需要读取一个文件,文件的开头有一系列注释行并不是我们想要的
from itertools import dropwhile
with open('/etc/passwd') as f:
for line in dropwhile(lambda line: line,startwith('#'), f):
print(line, end='')

迭代所有可能的组合

  • 我们想对一些列元素的所有可能组合进行迭代
  • itrtools.permutations()函数接受一个元素集合,将其中所有元素重排列为所有可能的情况,并以元组的形式返回。
In [11]: from itertools import permutations
In [12]: items = ['a', 'b', 'c']
In [13]: for p in permutations(items):
...: print(p)
...:
('a', 'b', 'c')
('a', 'c', 'b')
('b', 'a', 'c')
('b', 'c', 'a')
('c', 'a', 'b')
('c', 'b', 'a')

#如果想得到较短的所有全排列,可以指定长度
In [14]: for p in permutations(items, 2):
...: print(p)
('a', 'b')
('a', 'c')
('b', 'a')
('b', 'c')
('c', 'a')
('c', 'b')
  • itertools.combinations 不考虑元素间的实际顺序,即('a', 'b')和('b', 'a')被认为是相同的组合形式。
  • 若想解除这一限制,可用combinations_with_replacement。

同时迭代多个序列

  • zip()函数可以用来迭代多个序列中的元素
>>>xvalues = [1,5,4,2,10,7]
>>> yvalues = [101,78,37,15,62,99]
>>> for x, y in zip(xvalues, yvalues):
... print(x, y)
...
1 101
5 78
4 37
2 15
10 62
7 99

在不同的容器中进行迭代

  • 我们需要对许多对象执行相同的操作,但是这些对象包含在不同的容器内,而我们希望可以避免写出嵌套的循环处理,保持代码的可读性。使用itertools.chain()方法可以用来简化这个任务。
from itertools import chain

In [18]: a = [1, 2, 3, 4]
In [19]: b = ['x', 'y', 'z']
In [20]: for x in chain(a, b):
...: print (x)
...:
1
2
3
4
x
y
z

合并多个有序序列,再对整个有序序列进行迭代

  • heapq.merge()函数
>>>import heapq
>>>a = [1,4,7,10]
>>>b = [2,5,6,11]
>>>for c in heapq.merge(a,b):
... print(c)
...
1
2
4
5
6
7
10
11

Chap 5 文件和IO

将输出重定向到文件中

  • 只需要在print()函数加上file关键字参数即可
with open('somefile.txt', 'rt') as f:
print('Hello World!', file=f)

以不同的分隔符或行结尾符完成打印

>>>print('GKY',1995,5,18, sep='-',end='!!\n')
GKY-1995-5-18!!

在字符串上执行IO操作

  • 使用io.StringIO()和io.ByteIO()来创建类似于文件的对象,这些对象可操作字符串数据。

读写压缩的数据文件

  • gzip和bz2模块可以实现
import gzip
with open('somefile.gz', 'rt') as f:
text = f.read()

import bz2
with open('somefile.bz2', 'rt') as f:
text = f.read()

import gzip
with open('somefile.gz', 'wt') as f:
f.write(text)

import bz2
with open('somefile.bz', 'wt') as f:
f.write(text)

将二进制数据读到可变缓冲区中

  • 我们想将二进制数据直接读取到一个可变缓冲区中,中间不经过任何拷贝环节。例如我们想原地修改数据再将它写回到文件中去。
import os.path
def read_into_buffer(filename):
buf = bytearray(os.path.getsize(filename))
with open(filename, 'rb') as f:
f.readinto(buf)
return buf

with open('sample.bin', 'wb') as f:
f.write(b'hello world')

buf = read_into_buffer('sample.bin')
In [16]: buf
Out[16]: bytearray(b'hello world')

序列化Python对象

  • 我们需要将Python对象序列化为字节流,这样就可以将其保存到文件中、存储到数据库中或者通过网络连接进行传输。
  • 序列化数据最常见的做法就是使用pickle模块。
import pickle
data = ... #some python object
f = open('somefile', 'wb')
pickle.dump(data,f)
  • 要将对象转存为字符串,可以使用
import pickle
data = ... #some python object
f = open('somefile', 'wb')
pickle.dumps(data,f)
  • 如果要从字节流中重新创建出对象,可以使用pickle.load()或者pickle.loads()

Chap 6 数据编码与处理

读写JSON数据

  • 主要使用JSON模块
  • 两个主要的函数为json.dumps()和json.loads()
  • 如果是文件而不是字符串的话使用json.dump()和json.load()

解析简单的XML文档

  • xml.etree.ElementTree可以从简单的XML文档中提取数据
from urllib.request import urlopen
from xml.etree.ElementTree import parse

u = urlopen('http://planet.python.org/rss20.xml')
doc = parse(u)
In [24]: for item in doc.iterfind('channel/item'):
....: title = item.findtext('title')
....: date = item.findtext('pubDate')
....: link = item.findtext('link')
....: print (title)
....: print(date)
....: print(link)
....: print()
....:

以上~

大噶元宵节快乐!




本文转载自公众号NewBeeNLP,作者高开远

推荐阅读

AINLP年度阅读收藏清单

Transformers Assemble(PART I)

站在BERT肩膀上的NLP新秀们(PART I)

站在BERT肩膀上的NLP新秀们(PART II)

站在BERT肩膀上的NLP新秀们(PART III)

大幅减少GPU显存占用:可逆残差网络(The Reversible Residual Network)

鼠年春节,用 GPT-2 自动写对联和对对联

transformer-XL与XLNet笔记

AINLP-DBC GPU 云服务器租用平台建立,价格足够便宜

征稿启示 | 稿费+GPU算力+星球嘉宾一个都不少

关于AINLP

AINLP 是一个有趣有AI的自然语言处理社区,专注于 AI、NLP、机器学习、深度学习、推荐算法等相关技术的分享,主题包括文本摘要、智能问答、聊天机器人、机器翻译、自动生成、知识图谱、预训练模型、推荐系统、计算广告、招聘信息、求职经验分享等,欢迎关注!加技术交流群请添加AINLP君微信(id:AINLP2),备注工作/研究方向+加群目的。


登录查看更多
0

相关内容

CHAP:挑战握手认证协议 (Challenge Handshake Authentication Protocol) 挑战握手认证协议(CHAP,Challenge-Handshake Authentication Protocol)是在网络物理连接后进行连接安全性验证的协议。它比另一种协议密码验证程序(PAP)更加可靠。 挑战握手认证协议(CHAP)通过 三次握手周期性的校验对端的身份,在初始链路建立时完成,可以在链路建立之后的任何时候重复进行。
【干货书】Python语音计算导论,408页pdf
专知会员服务
102+阅读 · 2020年7月12日
一份简明有趣的Python学习教程,42页pdf
专知会员服务
76+阅读 · 2020年6月22日
【实用书】Python技术手册,第三版767页pdf
专知会员服务
235+阅读 · 2020年5月21日
Python导论,476页pdf,现代Python计算
专知会员服务
260+阅读 · 2020年5月17日
【实用书】Python爬虫Web抓取数据,第二版,306页pdf
专知会员服务
117+阅读 · 2020年5月10日
【干货书】流畅Python,766页pdf,中英文版
专知会员服务
225+阅读 · 2020年3月22日
【新书】Python数据科学食谱(Python Data Science Cookbook)
专知会员服务
114+阅读 · 2020年1月1日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
5大必知的图算法,附Python代码实现
AI100
4+阅读 · 2019年9月10日
手把手教你用Python实现“坦克大战”,附详细代码!
机器学习算法与Python学习
11+阅读 · 2019年6月8日
盘一盘 Python 系列 8 - Sklearn
平均机器
5+阅读 · 2019年5月30日
一文看懂怎么用 Python 做数据分析
大数据技术
24+阅读 · 2019年5月5日
实战 | 用Python做图像处理(三)
七月在线实验室
15+阅读 · 2018年5月29日
快乐的迁移到 Python3
Python程序员
5+阅读 · 2018年3月25日
教你用Python来玩跳一跳
七月在线实验室
6+阅读 · 2018年1月2日
Python3爬虫之入门和正则表达式
全球人工智能
7+阅读 · 2017年10月9日
python pandas 数据处理
Python技术博文
4+阅读 · 2017年8月30日
python进行数据分析之数据聚合和分组运算
Python技术博文
3+阅读 · 2017年8月21日
Arxiv
3+阅读 · 2019年8月26日
Arxiv
5+阅读 · 2018年6月12日
Arxiv
7+阅读 · 2018年1月21日
Arxiv
5+阅读 · 2015年9月14日
VIP会员
相关VIP内容
【干货书】Python语音计算导论,408页pdf
专知会员服务
102+阅读 · 2020年7月12日
一份简明有趣的Python学习教程,42页pdf
专知会员服务
76+阅读 · 2020年6月22日
【实用书】Python技术手册,第三版767页pdf
专知会员服务
235+阅读 · 2020年5月21日
Python导论,476页pdf,现代Python计算
专知会员服务
260+阅读 · 2020年5月17日
【实用书】Python爬虫Web抓取数据,第二版,306页pdf
专知会员服务
117+阅读 · 2020年5月10日
【干货书】流畅Python,766页pdf,中英文版
专知会员服务
225+阅读 · 2020年3月22日
【新书】Python数据科学食谱(Python Data Science Cookbook)
专知会员服务
114+阅读 · 2020年1月1日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
5大必知的图算法,附Python代码实现
AI100
4+阅读 · 2019年9月10日
手把手教你用Python实现“坦克大战”,附详细代码!
机器学习算法与Python学习
11+阅读 · 2019年6月8日
盘一盘 Python 系列 8 - Sklearn
平均机器
5+阅读 · 2019年5月30日
一文看懂怎么用 Python 做数据分析
大数据技术
24+阅读 · 2019年5月5日
实战 | 用Python做图像处理(三)
七月在线实验室
15+阅读 · 2018年5月29日
快乐的迁移到 Python3
Python程序员
5+阅读 · 2018年3月25日
教你用Python来玩跳一跳
七月在线实验室
6+阅读 · 2018年1月2日
Python3爬虫之入门和正则表达式
全球人工智能
7+阅读 · 2017年10月9日
python pandas 数据处理
Python技术博文
4+阅读 · 2017年8月30日
python进行数据分析之数据聚合和分组运算
Python技术博文
3+阅读 · 2017年8月21日
Top
微信扫码咨询专知VIP会员