Pytorch转ONNX详解

2020 年 12 月 6 日 极市平台
↑ 点击 蓝字  关注极市平台

作者丨立交桥跳水冠军@知乎
来源丨https://zhuanlan.zhihu.com/p/272767300
编辑丨极市平台

极市导读

 

本文作者总结了自己参与Pytorch到ONNX的模型转换转换工作中的经验,主要介绍了该转换工作的意义,模型部署的路径以及Pytorch本身的局限。 >>加入极市CV技术交流群,走在计算机视觉的最前沿

之前几个月参与了OpenMMlab的模型转ONNX的工作(github account: drcut),主要目标是支持OpenMMLab的一些模型从Pytorch到ONNX的转换。这几个月虽然没做出什么成果,但是踩了很多坑,在这里记录下来,希望可以帮助其他人。


这篇是第一部分,理论篇,主要介绍了和代码无关的一些宏观问题。再接下来我会专门写一篇实战篇,针对OpenMMlab中一些具体代码做分析,说明Pytorch转化ONNX过程中的一些代码上的技巧和注意事项。


(1)Pytorch转ONNX的意义

一般来说转ONNX只是一个手段,在之后得到ONNX模型后还需要再将它做转换,比如转换到TensorRT上完成部署,或者有的人多加一步,从ONNX先转换到caffe,再从caffe到tensorRT。原因是Caffe对tensorRT更为友好,这里关于友好的定义后面会谈。


因此在转ONNX工作开展之前,首先必须明确目标后端。ONNX只是一个格式,就和json一样。只要你满足一定的规则,都算是合法的,因此单纯从Pytorch转成一个ONNX文件很简单。但是不同后端设备接受的onnx是不一样的,因此这才是坑的来源。


Pytorch自带的torch.onnx.export转换得到的ONNX,ONNXRuntime需要的ONNX,TensorRT需要的ONNX都是不同的。


这里面举一个最简单的Maxpool的例:

Maxunpool可以被看作Maxpool的逆运算,咱们先来看一个Maxpool的例子,假设有如下一个C*H*W的tensor(shape[2, 3, 3]),其中每个channel的二维矩阵都是一样的,如下所示

 

在这种情况下,如果我们在Pytorch对它调用MaxPool(kernel_size=2, stride=1,pad=0)


那么会得到两个输出,第一个输出是Maxpool之后的值:

 


另一个是Maxpool的Idx,即每个输出对应原来的哪个输入,这样做反向传播的时候就可以直接把输出的梯度传给对应的输入:

 


细心的同学会发现其实Maxpool的Idx还可以有另一种写法:

  ,


即每个channel的idx放到一起,并不是每个channel单独从0开始。这两种写法都没什么问题,毕竟只要反向传播的时候一致就可以。


但是当我在支持OpenMMEditing的时候,会涉及到Maxunpool,即Maxpool的逆运算:输入MaxpoolId和Maxpool的输出,得到Maxpool的输入。


Pytorch的MaxUnpool实现是接收每个channel都从0开始的Idx格式,而Onnxruntime则相反。因此如果你希望用Onnxruntime跑一样的结果,那么必须对输入的Idx(即和Pytorch一样的输入)做额外的处理才可以。换言之,Pytorch转出来的神经网络图和ONNXRuntime需要的神经网络图是不一样的。


(2)ONNX与Caffe

主流的模型部署有两种路径,以TensorRT为例,一种是Pytorch->ONNX->TensorRT,另一种是Pytorch->Caffe->TensorRT。个人认为目前后者更为成熟,这主要是ONNX,Caffe和TensorRT的性质共同决定的

上面的表列了ONNX和Caffe的几点区别,其中最重要的区别就是op的粒度。举个例子,如果对Bert的Attention层做转换,ONNX会把它变成MatMul,Scale,SoftMax的组合,而Caffe可能会直接生成一个叫做Multi-Head Attention的层,同时告诉CUDA工程师:“你去给我写一个大kernel“(很怀疑发展到最后会不会把ResNet50都变成一个层。。。)

因此如果某天一个研究员提了一个新的State-of-the-art的op,很可能它直接就可以被转换成ONNX(如果这个op在Pytorch的实现全都是用Aten的库拼接的),但是对于Caffe的工程师,需要重新写一个kernel。

细粒度op的好处就是非常灵活,坏处就是速度会比较慢。这几年有很多工作都是在做op fushion(比如把卷积和它后面的relu合到一起算),XLA和TVM都有很多工作投入到了op fushion,也就是把小op拼成大op。

TensorRT是NVIDIA推出的部署框架,自然性能是首要考量的,因此他们的layer粒度都很粗。在这种情况下把Caffe转换过去有天然的优势。

除此之外粗粒度也可以解决分支的问题。TensorRT眼里的神经网络就是一个单纯的DAG:给定固定shape的输入,执行相同的运算,得到固定shape的输出。

**目前TensorRT的一个发展方向是支持dynamic shape,但是还很不成熟。
  
  
    
tensor i = funcA();
if(i==0)
j = funcB(i);
else
j = funcC(i);
funcD(j);
对于上面的网络,假设funcA,funcB,funcC和funcD都是onnx支持的细粒度算子,那么ONNX就会面临一个困难,它转换得到的DAG要么长这样:funcA->funcB->funcD,要么funcA->funcC->funcD。但是无论哪种肯定都是有问题的。

而Caffe可以用粗粒度绕开这个问题
  
  
    
tensor i = funcA();
coarse_func(tensor i) {
if(i==0) return funcB(i);
else return funcC(i);
}
funcD(coarse_func(i))
因此它得到的DAG是:funcA->coarse_func->funcD

当然,Caffe的代价就是苦逼的HPC工程师就要手写一个coarse_func kernel。。。(希望Deep Learning Compiler可以早日解放HPC工程师)

(3)Pytorch本身的局限

熟悉深度学习框架的同学都知道,Pytorch之所以可以在tensorflow已经占据主流的情况下横空出世,成功抢占半壁江山,主要的原因是它很灵活。举个不恰当的例子,tensorflow就像是C++,而Pytorch就是Python。

tensorflow会把整个神经网络在运行前做一次编译,生成一个DAG(有向无环图),然后再去跑这张图。Pytorch则相反,属于走一步看一步,直到运行到这个节点算出结果,才知道下一个节点该算啥。

ONNX其实就是把上层深度学习框架中的网络模型转换成一张图,因为tensorflow本身就有一张图,因此只需要直接把这张图拿到手,修修补补就可以。

但是对于Pytorch,没有任何图的概念,因此如果想完成Pytorch到ONNX的转换,就需要让ONNX再旁边拿个小本子,然后跑一遍Pytorch,跑到什么就把什么记下来,把记录的结果抽象成一张图。因此Pytorch转ONNX有两个天然的局限。

1. 转换的结果只对特定的输入。 如果换一个输入导致网络结构发生了变化,ONNX是无法察觉的(最常见的情况是如果网络中有if语句,这次的输入走了if的话,ONNX就只会生成if对应的图,把else里面全部的信息都丢掉)。

2. 需要比较多的计算量,因为需要真刀真枪的跑一遍神经网络。

PS:针对于以上的两个局限,我的本科毕设论文提出了一种解决方案,就是通过编译器里面的词法分析,语法分析直接扫描Pytorch或者tensorflow的源代码得到图结构,这样可以轻量级的完成模型到ONNX的转换,同时也可以得到分支判断等信息,这里放一个github链接(https://github.com/drcut/NN_transform),希望大家多多支持

*目前Pytorch官方希望通过用TorchScript的方式解决分支语句的问题,但据我所知还不是很成熟。

推荐阅读




    添加极市小助手微信(ID : cvmart2),备注:姓名-学校/公司-研究方向-城市(如:小极-北大-目标检测-深圳),即可申请加入极市目标检测/图像分割/工业检测/人脸/医学影像/3D/SLAM/自动驾驶/超分辨率/姿态估计/ReID/GAN/图像增强/OCR/视频理解等技术交流群:月大咖直播分享、真实项目需求对接、求职内推、算法竞赛、干货资讯汇总、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企视觉开发者互动交流~

    △长按添加极市小助手

    △长按关注极市平台,获取 最新CV干货

    觉得有用麻烦给个在看啦~   
    登录查看更多
    2

    相关内容

    跨框架的模型中间表达框架
    最新LightGBM进展介绍报告,39页ppt
    专知会员服务
    30+阅读 · 2021年1月15日
    【2020新书】数据结构与数据表示指南,112页pdf
    专知会员服务
    82+阅读 · 2020年10月6日
    干净的数据:数据清洗入门与实践,204页pdf
    专知会员服务
    161+阅读 · 2020年5月14日
    专知会员服务
    235+阅读 · 2020年1月23日
    TensorFlow Lite指南实战《TensorFlow Lite A primer》,附48页PPT
    专知会员服务
    69+阅读 · 2020年1月17日
    【书籍】深度学习框架:PyTorch入门与实践(附代码)
    专知会员服务
    163+阅读 · 2019年10月28日
    【开源书】PyTorch深度学习起步,零基础入门(附pdf下载)
    专知会员服务
    110+阅读 · 2019年10月26日
    使用ONNX+TensorRT部署人脸检测和关键点250fps
    极市平台
    34+阅读 · 2019年10月22日
    PyTorch模型训练特征图可视化(TensorboardX)
    极市平台
    33+阅读 · 2019年6月29日
    教程 | PyTorch经验指南:技巧与陷阱
    机器之心
    15+阅读 · 2018年7月30日
    PyTorch:60分钟入门学习
    全球人工智能
    13+阅读 · 2018年5月18日
    干货 | 深度学习之CNN反向传播算法详解
    机器学习算法与Python学习
    17+阅读 · 2017年11月21日
    干货 | 深度学习之卷积神经网络(CNN)的前向传播算法详解
    机器学习算法与Python学习
    9+阅读 · 2017年11月17日
    PyTorch 到底好用在哪里?
    AI研习社
    3+阅读 · 2017年10月27日
    PyTorch vs. TensorFlow之一个月用户体验
    深度学习世界
    3+阅读 · 2017年10月21日
    手把手教你由TensorFlow上手PyTorch(附代码)
    数据派THU
    5+阅读 · 2017年10月1日
    Arxiv
    0+阅读 · 2021年2月12日
    Arxiv
    5+阅读 · 2020年3月16日
    Arxiv
    4+阅读 · 2019年12月2日
    Mesh R-CNN
    Arxiv
    4+阅读 · 2019年6月6日
    VIP会员
    相关VIP内容
    最新LightGBM进展介绍报告,39页ppt
    专知会员服务
    30+阅读 · 2021年1月15日
    【2020新书】数据结构与数据表示指南,112页pdf
    专知会员服务
    82+阅读 · 2020年10月6日
    干净的数据:数据清洗入门与实践,204页pdf
    专知会员服务
    161+阅读 · 2020年5月14日
    专知会员服务
    235+阅读 · 2020年1月23日
    TensorFlow Lite指南实战《TensorFlow Lite A primer》,附48页PPT
    专知会员服务
    69+阅读 · 2020年1月17日
    【书籍】深度学习框架:PyTorch入门与实践(附代码)
    专知会员服务
    163+阅读 · 2019年10月28日
    【开源书】PyTorch深度学习起步,零基础入门(附pdf下载)
    专知会员服务
    110+阅读 · 2019年10月26日
    相关资讯
    使用ONNX+TensorRT部署人脸检测和关键点250fps
    极市平台
    34+阅读 · 2019年10月22日
    PyTorch模型训练特征图可视化(TensorboardX)
    极市平台
    33+阅读 · 2019年6月29日
    教程 | PyTorch经验指南:技巧与陷阱
    机器之心
    15+阅读 · 2018年7月30日
    PyTorch:60分钟入门学习
    全球人工智能
    13+阅读 · 2018年5月18日
    干货 | 深度学习之CNN反向传播算法详解
    机器学习算法与Python学习
    17+阅读 · 2017年11月21日
    干货 | 深度学习之卷积神经网络(CNN)的前向传播算法详解
    机器学习算法与Python学习
    9+阅读 · 2017年11月17日
    PyTorch 到底好用在哪里?
    AI研习社
    3+阅读 · 2017年10月27日
    PyTorch vs. TensorFlow之一个月用户体验
    深度学习世界
    3+阅读 · 2017年10月21日
    手把手教你由TensorFlow上手PyTorch(附代码)
    数据派THU
    5+阅读 · 2017年10月1日
    相关论文
    Arxiv
    0+阅读 · 2021年2月12日
    Arxiv
    5+阅读 · 2020年3月16日
    Arxiv
    4+阅读 · 2019年12月2日
    Mesh R-CNN
    Arxiv
    4+阅读 · 2019年6月6日
    Top
    微信扫码咨询专知VIP会员