卫星图片重建洛杉矶3D模型,效果就像谷歌地球,港中大团队提出CityNeRF

2021 年 12 月 19 日 量子位
晓查 发自 凹非寺
量子位 报道 | 公众号 QbitAI

看到下面这张动图,你会想到什么?是谷歌地球,还是苹果自带的3D地图?

其实都不是,它是用卫星和航拍图片直接渲染生成的洛杉矶。

很难想象,如此精细的城市3D模型,竟然是用几张不同角度和高度的2D图片重建的。

这项研究来自香港中文大学多媒体实验室团队,叫做CityNeRF

说到这里,有人应该想到了这两年大热的“神经辐射场”(NeRF),它可以用多张角度照片重建3D对象,性能出色。量子位之前对此进行了相关报道和解读。

NeRF虽然恢复室内场景效果惊艳,但是直接用到城市级的卫星地图上,却面临着巨大的挑战。

首先是拍摄相机有很大的运动自由度。随着相机的上升,场景中的地物外观越来越粗糙,几何细节越来越少,纹理分辨率越来越低。

同时,随着空间覆盖范围的扩大,来自外围区域的新对象会加入到视图中。

相机在这个一系列场景中,产生了具有不同细节级别和空间覆盖范围的多尺度数据。

如果使用原来的NeRF渲染,那么生成的远景往往不完整,周边场景区域存在伪影,近景总是具有模糊的纹理和形状。

什么原理?

针对上述问题,作者提出了采用多阶段渐进式学习范式的CityNeRF。

作者根据相机距离将整个训练数据集划分为预定义数量的尺度。从最远的尺度开始,每个训练阶段逐渐将训练集扩大一个更近的尺度,并同步增长模型。

通过这种方式,CityNeRF可以稳健地学习跨场景所有尺度的表示层次结构。

CityNeRF引入了两个特殊的设计:

1、具有残差块结构的生长模型:

在每个训练阶段附加一个额外的块来扩展模型。每个块都有自己的输出head,用于预测连续阶段之间的颜色和密度残差,促使块在近距离观察中关注新兴细节;

2、包容的多级数据监督:

每个块的输出head由从最远尺度到其对应尺度的图像联合监督。

换句话说,最后一个块接受所有训练图像的监督,而最早的块只暴露于最粗尺度的图像。通过这样的设计,每个块模块都能够充分利用其能力,在更近的视图中对复杂的细节进行建模,并保证尺度之间一致的渲染质量。

总体来说,CityNeRF是一种渐进式学习范式,可同步增长NeRF模型和训练集。从用浅基块拟合远景开始,随着训练的进行,添加新的块以适应越来越近的视图中出现的细节。

该策略有效地激活了位置编码中的高频通道,并随着训练的进行展开更复杂的细节。

简而言之,使用基本神经网络多层感知器的权重,NeRF将提前处理所有图像,知道其观点位置。NeRF将使用相机的光线找到每个像素的颜色和密度。

因此,它知道相机的方向,并可以同时使用所有数组来了解深度和相应的颜色。然后,使用损失函数优化了神经网络的收敛性,

模型训练数据数据来自Google Earth Studio中的12个城市图像。结果显示在几种常见重建模型中达到了最佳的效果。

最后,作者又将该模型用于重建无人机拍摄的空中图像,依然收到了更佳的效果。

团队简介

本篇论文的两位一作是来自香港中文大学MMLab的两位博士生相里元博徐霖宁。前者曾有一篇论文被ICLR 2020收录,后者有多篇论文被CVPR、ICCV等顶会收录。

通讯作者是以上两位的导师林达华

林达华是香港中文大学信息工程系副教授,也是港中大-商汤科技联合实验室主任。

论文地址:
https://arxiv.org/abs/2112.05504

项目地址:
https://city-super.github.io/citynerf/

本文系网易新闻•网易号特色内容激励计划签约账号【量子位】原创内容,未经账号授权,禁止随意转载。

「智能汽车」交流群招募中!

欢迎关注智能汽车、自动驾驶的小伙伴们加入社群,与行业大咖交流、切磋,不错过智能汽车行业发展&技术进展。

ps.加好友请务必备注您的姓名-公司-职位哦~


点这里👇关注我,记得标星哦~

一键三连「分享」、「点赞」和「在看」

科技前沿进展日日相见~


登录查看更多
0

相关内容

CVPR2022 | 多模态Transformer用于视频分割效果惊艳
专知会员服务
40+阅读 · 2022年3月12日
【博士论文】基于深度学习的单目场景深度估计方法研究
【博士论文】多视光场光线空间几何模型研究
专知会员服务
21+阅读 · 2021年12月6日
【博士论文】开放环境下的度量学习研究
专知会员服务
45+阅读 · 2021年12月4日
专知会员服务
22+阅读 · 2021年9月23日
专知会员服务
38+阅读 · 2021年3月29日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Residual Mixture of Experts
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
20+阅读 · 2021年9月21日
Arxiv
25+阅读 · 2021年3月20日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
Arxiv
11+阅读 · 2018年5月13日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Residual Mixture of Experts
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
20+阅读 · 2021年9月21日
Arxiv
25+阅读 · 2021年3月20日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
Arxiv
11+阅读 · 2018年5月13日
Top
微信扫码咨询专知VIP会员