氮是维持生命活动最重要的营养元素之一。氮气是氮元素的丰富来源,但由于性质惰性,不能为生物直接利用。氮的生物地球化学循环是将氮转化成生物可利用形式的关键过程。固氮微生物,包括固氮细菌和固氮古菌,可将惰性的氮气转化成生物可利用的氨态氮或硝态氮。据估计,生物可利用氮的半数由生物固氮过程提供。然而,微生物种类和功能丰富多样,超过99%的环境菌目前无法实现纯培养,因而对环境中固氮菌功能和活性的认识仍非常不足。环境微生物的不可纯培养性,带来了方法学上的挑战。从单细胞水平上研究环境微生物可克服纯培养或富集培养的限制,实现在环境介质下的原位研究。拉曼光谱(包括SERS、常规和共振拉曼)可在单细胞水平上对微生物进行无损检测,并提供微生物组成的指纹图谱。拉曼光谱与稳定同位素标记结合(Stable isotope probing, SIP),利用微生物同化SIP标记底物引起蛋白、脂类、色素的特征拉曼谱峰偏移,已实现从单细胞水平上检测环境功能菌。
中国科学院城市环境研究所城市土壤与生物地球化学研究组(朱永官团队),在发展单细胞拉曼-15N2 SIP技术用于固氮功能菌的研究上做了开拓性工作。针对土壤中的固氮菌,首次建立单细胞共振拉曼与15N2标记联用技术,发掘出15N2相关的指示固氮菌的特征偏移谱峰,即细胞色素c共振拉曼峰的偏移。利用此指示峰,实现在单细胞水平上检测复杂土壤环境中的固氮菌,并利用指示峰的偏移程度,在单细胞水平上,比较了土壤固氮菌的固氮活性。此外,研究组与牛津大学教授Wei Huang合作,针对包括固氮菌在内的多种氮循环(N2、NH4、NO3)功能菌,率先发展表面增强拉曼光谱(SERS)-15N SIP联用技术,利用SERS对微生物中含氮生物分子腺嘌呤的选择性增强,获得不同15N标记氮源引起的细菌腺嘌呤谱峰的显著线性偏移,并利用SERS-15N SIP研究厦门杏林湾水体中细菌对15N2、15NH4Cl、15NO3不同氮源的选择性代谢。上述工作促进了对大量未知环境菌群的深入认识,尤其是氮循环功能菌及其活性的深入解析。
相关研究成果分别以 Functional Single-Cell Approach to Probing Nitrogen-Fixing Bacteria in Soil Communities by Resonance Raman Spectroscopy with 15N2 Labeling 为题,发表在 Anal. Chem. 上;以 Surface-enhanced Raman spectroscopy combined with stable isotope probing to monitor nitrogen assimilation at both bulk and single-cell level 为题,发表在 Anal. Chem. 上。研究工作得到了国家重点研发计划和国家自然科学基金等的资助。
城市环境所在发展单细胞拉曼光谱揭示氮循环功能菌研究中取得进展
来源:中国科学院城市环境研究所