本书介绍了共形预测(Conformal Prediction)及其相关推断技术,这些技术建立在置换检验和可交换性基础之上,广泛应用于包括假设检验和为机器学习系统提供不确定性量化保证在内的多种任务。共形预测之所以受到广泛关注,是因为它能够无缝集成到复杂的机器学习工作流中,在不对数据生成分布形式作任何假设的情况下,解决了构建预测集的问题。由于现代机器学习算法通常难以直接分析,共形预测的主要吸引力在于它能够与这些方法配对,为有限样本提供正式的理论保证。
本书的目标是向读者介绍研究共形预测及其相关分布无关推断问题时所涉及的基本技术论证。这些证明策略(尤其是较新的部分)散见于不同的研究论文中,使得研究者难以确定应该参考哪些结果、哪些结论最为重要,以及这些证明具体是如何构造的。本书旨在弥合这一差距,通过整理我们认为文献中最重要的一些结果,并以统一的语言、配有插图的形式呈现这些证明,同时注重教学性。 需要注意的是,本书并不专注于如何在实践中应用共形预测。如果读者对更实用和面向应用的共形预测入门感兴趣,可以参考《共形预测:温和的介绍》(“Conformal Prediction: A Gentle Introduction”,Angelopoulos 等,2022年)。
本书主要面向从事统计理论和方法开发的读者,广义而言,包括对有限样本模型无关界感兴趣的经典统计学家,以及希望找到适用于不断变化的机器学习算法模块化理论的机器学习研究者。读者需要的背景知识一般相当于理论统计学研究生一年级课程的水平;尽管偶尔会涉及一些测度论,但本书的大部分内容并不依赖于它。 我们希望本书能够为读者提供对该领域理论基础的深入理解,从而帮助他们为共形预测及其他分布无关推断领域的持续理论发展做出贡献。
** 本书的范围**
在本章的介绍之后,第 I 部分的其余内容将从数学的角度介绍可交换性,并提供一份术语表,列出对本书后续统计结果有用的性质和事实。我们特别关注置换检验,因为共形预测可以被重新表述为置换检验的反转。这些工具对于本书后续的许多证明和直觉发展至关重要。
第 II 部分深入探讨共形预测框架。具体而言,我们讨论了完全共形预测(Full Conformal Prediction),这是对之前提到的分割共形预测方法的一个推广,揭示了其中的基本统计逻辑。随后,我们描述了比边际覆盖(Marginal Coverage)更强的性质,包括对各种方法的积极结果和一些表明在不做更多假设的情况下所面临限制的难解性结果。
第 III 部分聚焦于共形预测方法的广泛扩展。包括基于交叉验证的共形预测方法、允许超越独立同分布(i.i.d.)假设的加权共形预测方法、为流数据设计的在线共形方法,以及用于加速共形预测的计算捷径。我们还简要介绍了一些额外主题,例如能够处理更广泛风险定义的共形预测变体,以及与选择性推断、多重检验和模型集成的关联。这些主题是该领域近期工作的缩影,暗示了许多可以继续研究的方向。 最后,在第 IV 部分,我们从预测推断的重点中转移,研究分布无关推断在其他问题上的应用。这些问题包括回归函数估计、概率估计的校准,以及条件独立性的检验。