VIP内容

图像配准是医学影像处理与智能分析领域中的重要环节和关键技术.传统的图像配准算法由于复杂性较高、计算代价较大等问题,无法实现配准的实时性要求.随着深度学习方法的发展,基于学习的图像配准方法也取得显著效果.文中系统总结基于深度学习的医学图像配准方法.具体地,将方法归为3类:监督学习,无监督学习和对偶监督/弱监督学习.在此基础上,分析和讨论各自优缺点.进一步,着重讨论近年来提出的正则化方法,特别是基于微分同胚表示的正则和基于多尺度的正则.最后,根据当前医学图像配准方法的发展趋势,展望基于深度学习的医学图像配准方法.

http://manu46.magtech.com.cn/Jweb_prai/CN/abstract/abstract12159.shtml

成为VIP会员查看完整内容
0
15
Top