VIP内容

http://dblab.xmu.edu.cn/post/bigdatapractice2/#xiazaizhuanqu

本教程是林子雨编著《大数据技术原理与应用(第3版)》教材的配套实验指导书。《大数据技术原理与应用》侧重于大数据知识框架和理论介绍,而本教程侧重于介绍大数据软件的安装、使用和基础编程方法,并提供了大量实验和案例。由于大数据软件都是开源软件,安装过程一般比较复杂,也很耗费时间。为了尽量减少读者搭建大数据实验环境时的障碍,笔者在本教程中详细写出了各种大数据软件的详细安装过程,可以确保读者顺利完成大数据实验环境搭建。

本书以大数据分析全流程为主线,介绍了数据采集、数据存储与管理、数据处理与分析、数据可视化等环节典型软件的安装、使用和基础编程方法,内容涵盖了操作系统(Linux和Windows)、开发工具(Eclipse)以及大数据相关技术、软件(Kafaka、Hadoop、HDFS、MapReduce、HBase、Hive、Spark、MySQL、MongoDB、Redis、R、D3、ECharts)等。同时,提供了丰富的课程实验和综合案例以及大量免费的在线教学资源,可以较好地满足高等院校大数据教学实际需求。

《大数据基础编程、实验和案例教程(第2版)》前言

《大数据基础编程、实验和案例教程》第1版于2017年7月出版,在过去的两年多时间里,大数据技术又获得了新的发展,开源流计算框架Flink迅速崛起,在市场上和Spark展开了激烈的角逐。与此同时,Hadoop和Spark的版本也在不断更新升级,一些编程接口发生了变化。因此,为了适应大数据技术的新发展,继续保持本书的先进性和实用性,我们及时对第1版内容进行了补充和修订。

这里对第1版教材的修改做一些简要说明。在“第2章 Linux系统的安装和使用”部分,对VirtualBox软件进行了版本升级,并修改了在Linux系统中安装Eclipse的方法。在“第3章 Hadoop的安装和使用”部分,修改了Hadoop版本的介绍,修改了Java环境的安装方法,把Hadoop版本升级到了3.1.3,同时,删除了“使用Docker搭建Hadoop分布式集群”这部分内容,因为该内容在教学中很少被使用。在“第4章 HDFS操作方法和基础编程”部分,把Hadoop版本升级到了3.1.3,并根据最新版本的特点对HDFS相关内容作了修改,同时对HDFS编程实践的内容进行重新撰写。在“第5章 HBase的安装和基础编程”部分,把HBase版本升级到了2.2.2,版本升级以后,HBase的安装配置方法和相关的编程接口也发生了变化,因此,对编程接口和实例代码进行了大量修改。在“第6章 典型NoSQL数据库的安装和使用”部分,把Redis升级到了较新的5.0.5版本,并对由于版本升级而发生变化的内容做了修改。在“第7章 MapReduce基础编程”部分,把Hadoop版本升级到了3.1.3,并对由于版本升级而发生变化的相关内容做了修改。在“第8章 数据仓库Hive的安装和使用”,把Hive版本升级到了3.1.2,并对由于版本升级而发生变化的相关内容做了修改。在“第9章 Spark的安装和基础编程”部分,把Spark版本升级到了2.4.0,并对由于版本升级而发生变化的相关内容做了修改。新增“第10章 Flink的安装和基础编程”,以反映当前新兴的大数据处理技术,并介绍了Flink的安装和基础编程方法。在“第11章 典型可视化工具的使用方法”部分,删除了一些教学环节不太方便开展实践的内容,包括Easel.ly、Tableau和魔镜等,因为这些技术产品存在官网无法访问、需要用户注册才能使用等问题。在“第12章 数据采集工具的安装和使用”,删除了Flume的内容,因为,Flume的内容比较孤立,学习以后没有和其他章节的内容进行有效结合,同时删除了Sqoop的内容,因为Sqoop没有提供对最新版Hadoop和Hive等软件的支持。在“第13章 大数据课程综合实验案例”部分,把各个大数据软件的版本都进行了升级,并删除了和Sqoop相关的操作实践,因为Sqoop不支持新版的Hadoop和Hive,同时,增加了使用Java程序把Hive中的数据导入MySQL。在“第14章 实验”部分,把实验中相关软件升级到了较新的版本,并新增了3个实验,从而帮助读者更好实践Hive、Spark和Flink等大数据技术。

本书第1版是《大数据技术原理与应用(第2版)》的“姊妹书”,前者可以作为后者的课程配套实验手册。由于《大数据技术原理与应用(第2版)》已经在全国高校得到了广泛的使用,大量高校采用该教材开设了大数据课程,因此,这也带动了本书第1版在高校的大量使用。在使用过程中,一些高校老师积极反馈了很多宝贵的意见和建议,为我们团队进行本书第2版的创作提供了很好的方向指引。同时,笔者也在厦门大学开设了大数据课程,并把本书第1版积极应用在实践教学中,让教材在教学实践中经受检验。现在,《大数据技术原理与应用(第2版)》已经改版到了第3版,作为配套“姊妹书”,本书也及时从第1版升级到了第2版,也就是说,在今后的教学过程中,本书第2版是和《大数据技术原理与应用(第3版)》配套使用的。当然,通过过去全国高校老师的反馈信息,我们也了解到,不少高校会直接把本书作为单独的课程教材(而不是配套的实验手册)来使用,因此,本书第2版也是可以作为独立教材来使用的。

本书由林子雨执笔。在撰写过程中,厦门大学计算机科学系硕士研究生程璐、林哲、郑宛玉、陈杰祥、陈绍纬、周伟敬等做了大量辅助性工作,在此,向这些同学的辛勤工作表示衷心的感谢。

本书官方网站是http://dblab.xmu.edu.cn/post/bigdatapractice2/,免费提供了全部配套资源的在线浏览和下载,并接受错误反馈和发布勘误信息。时,在学习大数据课程的过程中,欢迎读者访问厦门大学数据库实验室建设的国内高校首个大数据课程公共服务平台(http://dblab.xmu.edu.cn/post/bigdata-teaching-platform/),该平台为教师教学和学生学习大数据课程提供讲义PPT、学习指南、备课指南、上机习题、技术资料、授课视频等全方位、一站式免费服务。

大数据技术处于快速发展变革之中,我们厦门大学数据库实验室团队会持续跟踪大数据技术发展趋势,努力保持本书内容的新颖性,并把一些较新的教学内容及时发布到本书官网。由于笔者能力有限,书中难免存在不足之处,望广大读者不吝赐教。

林子雨 厦门大学计算机科学系数据库实验室

2020年3月

第1章-大数据技术概述 第2章-Linux系统的安装和使用 第3章-Hadoop的安装和使用 第4章-HDFS操作方法和基础编程 第5章-HBase的安装和基础编程 第6章-典型NoSQL数据库的安装和使用 第7章-MapReduce基础编程 第8章-数据仓库Hive的安装和使用 第9章-Spark的安装和基础编程 第10章-Flink的安装和基础编程 第11章-典型的可视化工具的使用方法 第12章-数据采集工具的安装和使用 第13章-大数据课程综合实验案例

成为VIP会员查看完整内容
0
30
Top