成为VIP会员查看完整内容
VIP会员码认证
首页
主题
发现
会员
服务
注册
·
登录
异常检测
关注
101
在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。异常也被称为离群值、新奇、噪声、偏差和例外。 特别是在检测滥用与网络入侵时,有趣性对象往往不是罕见对象,但却是超出预料的突发活动。这种模式不遵循通常统计定义中把异常点看作是罕见对象,于是许多异常检测方法(特别是无监督的方法)将对此类数据失效,除非进行了合适的聚集。相反,聚类分析算法可能可以检测出这些模式形成的微聚类。 有三大类异常检测方法。[1] 在假设数据集中大多数实例都是正常的前提下,无监督异常检测方法能通过寻找与其他数据最不匹配的实例来检测出未标记测试数据的异常。监督式异常检测方法需要一个已经被标记“正常”与“异常”的数据集,并涉及到训练分类器(与许多其他的统计分类问题的关键区别是异常检测的内在不均衡性)。半监督式异常检测方法根据一个给定的正常训练数据集创建一个表示正常行为的模型,然后检测由学习模型生成的测试实例的可能性。
综合
百科
VIP
热门
动态
论文
精华
Distributed Log-driven Anomaly Detection System based on Evolving Decision Making
Arxiv
0+阅读 · 4月3日
TailedCore: Few-Shot Sampling for Unsupervised Long-Tail Noisy Anomaly Detection
Arxiv
0+阅读 · 4月3日
VISTA: Unsupervised 2D Temporal Dependency Representations for Time Series Anomaly Detection
Arxiv
0+阅读 · 4月3日
End-To-End Self-Tuning Self-Supervised Time Series Anomaly Detection
Arxiv
0+阅读 · 4月3日
GAL-MAD: Towards Explainable Anomaly Detection in Microservice Applications Using Graph Attention Networks
Arxiv
0+阅读 · 3月31日
Anomaly Detection for Hybrid Butterfly Subspecies via Probability Filtering
Arxiv
0+阅读 · 4月2日
Dinomaly: The Less Is More Philosophy in Multi-Class Unsupervised Anomaly Detection
Arxiv
0+阅读 · 4月2日
Conformal Anomaly Detection for Functional Data with Elastic Distance Metrics
Arxiv
0+阅读 · 4月1日
Detecting Localized Density Anomalies in Multivariate Data via Coin-Flip Statistics
Arxiv
0+阅读 · 4月2日
View-Invariant Pixelwise Anomaly Detection in Multi-object Scenes with Adaptive View Synthesis
Arxiv
0+阅读 · 4月1日
VERA: Explainable Video Anomaly Detection via Verbalized Learning of Vision-Language Models
Arxiv
0+阅读 · 3月31日
FlowSeries: Anomaly Detection in Financial Transaction Flows
Arxiv
0+阅读 · 4月1日
DCAD-2000: A Multilingual Dataset across 2000+ Languages with Data Cleaning as Anomaly Detection
Arxiv
0+阅读 · 3月31日
Detecting Localized Density Anomalies in Multivariate Data via Coin-Flip Statistics
Arxiv
0+阅读 · 3月31日
A Parameter-Efficient Quantum Anomaly Detection Method on a Superconducting Quantum Processor
Arxiv
0+阅读 · 3月28日
参考链接
提示
微信扫码
咨询专知VIP会员与技术项目合作
(加微信请备注: "专知")
微信扫码咨询专知VIP会员
Top