聊天机器人 (Chatbot) 专知荟萃
入门学习
- 对话系统的历史(聊天机器人发展)
- 微软邓力:对话系统的分类与发展历程
- Deep Learning for Chatbots, Part 1 – Introduction 聊天机器人中的深度学习技术之一:导读
- Deep Learning for Chatbots, Part 2 – Implementing a Retrieval-Based Model in Tensorflow 聊天机器人中的深度学习技术之二:基于检索模型的实现
- 自己动手做聊天机器人教程(1-42)
- 如何让人工智能助理杜绝“智障” 微软亚洲研究院
- 周明:自然语言对话引擎 微软亚洲研究院
- 谢幸:用户画像、性格分析与聊天机器人
- 25 Chatbot Platforms: A Comparative Table
- 聊天机器人开发指南 IBM
- 朱小燕:对话系统中的NLP
- 使用深度学习打造智能聊天机器人 张俊林
- 九款工具帮您打造属于自己的聊天机器人
- 聊天机器人中对话模板的高效匹配方法
- 中国计算机学会通讯 2017年第9期 人机对话专刊
- 人机对话 by 刘 挺 张伟男
- 任务型与问答型对话系统中的语言理解技术 by 车万翔 张 宇
- 聊天机器人的技术及展望 by 武 威 周 明
- 人机对话中的情绪感知与表达 by 黄民烈 朱小燕
- 对话式交互与个性化推荐 by 胡云华
- 对话智能与认知型口语交互界面 by 俞 凯
- 对话系统评价技术进展及展望 by 张伟男 车万翔
- [https://pan.baidu.com/s/1o8Lv138]
- 中国人工智能学会通讯
综述
- The Dialog State Tracking Challenge Series: A Review
- A Survey of Available Corpora for Building Data-Driven Dialogue Systems
- 任务型人机对话系统中的认知技术——— 概念、进展及其未来
进阶论文
- Sequence to Sequence Learning with Neural Networks
- A Neural Conversational Model Oriol Vinyals, Quoc Le
- A Diversity-Promoting Objective Function for Neural Conversation Models
- A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues
- Sequence to Backward and Forward Sequences: A Content-Introducing Approach to Generative Short-Text Conversation
- A Persona-Based Neural Conversation Model
- Deep Reinforcement Learning for Dialogue Generation
- End-to-end LSTM-based dialog control optimized with supervised and reinforcement learning
- A Network-based End-to-End Trainable Task-oriented Dialogue System
- Incorporating Unstructured Textual Knowledge Sources into Neural Dialogue Systems
- A Neural Network Approach to Context-Sensitive Generation of Conversational Responses
- A Dataset for Research on Short-Text Conversation
- The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-Turn Dialogue Systems
- Joint Online Spoken Language Understanding and Language Modeling with Recurrent Neural Networks, 2016
- Neural Utterance Ranking Model for Conversational Dialogue Systems, 2016
- A Context-aware Natural Language Generator for Dialogue Systems, 2016
- Task Lineages: Dialog State Tracking for Flexible Interaction, 2016
- Affective Neural Response Generation
- Multi-Task Learning for Speaker-Role Adaptation in Neural Conversation Models
- Chatbot Evaluation and Database Expansion via Crowdsourcing
- A Neural Network Approach for Knowledge-Driven Response Generation
- Training End-to-End Dialogue Systems with the Ubuntu Dialogue Corpus
- Emotional Chatting Machine: Emotional Conversation Generation with Internal and External Memory ACL 2017
- Flexible End-to-End Dialogue System for Knowledge Grounded Conversation
- Augmenting End-to-End Dialog Systems with Commonsense Knowledge
- Evaluating Prerequisite Qualities for Learning End-to-End Dialog Systems
- Attention with Intention for a Neural Network Conversation Model
- Response Selection with Topic Clues for Retrieval-based Chatbots
- LSTM based Conversation Models
- Not All Dialogues are Created Equal: Instance Weighting for Neural Conversational Models
- Learning Discourse-level Diversity for Neural Dialog Models using Conditional Variational Autoencoders ACL 2017
- Words Or Characters? Fine-Grained Gating For Reading Comprehension ACL 2017
专门会议
- SIGDIAL
ACL所属的关于对话系统的兴趣小组
- INTERSPEECH 2017: INTERSPEECH 2017 which will take place on August 21-24 in Stockholm, Sweden, after SIGDIAL
- YRRSDS 2017: Young Researchers’ Roundtable on Spoken Dialog Systems, which will take place on August 13-14 also in Saarbrücken, Germany, right before SIGDIAL.
- SemDial 2017!
- Dialog System Technology Challenge (DSTC)
Tutorial
- 2017 Tutorial - Deep Learning for Dialogue Systems ACL 2017
- Research Blog: Computer, respond to this email.
- Deep Learning for Chatbots, Part 1 – Introduction
- Deep Learning for Chatbots, Part 2 – Implementing a Retrieval-Based Model in Tensorflow
- Chatbot Fundamentals An interactive guide to writing bots in Python
- Chatbot Tutorial
软件
Chatbot
- ParlAI
A framework for training and evaluating AI models on a variety of openly available dialog datasets.
- stanford-tensorflow-tutorials
A neural chatbot using sequence to sequence model with attentional decoder.
- ChatterBot
ChatterBot is a machine learning, conversational dialog engine for creating chat bots
- DeepQA
My tensorflow implementation of "A neural conversational model", a Deep learning based chatbot
- neuralconvo
Neural conversational model in Torch
- chatbot-rnn
A toy chatbot powered by deep learning and trained on data from Reddit
- tf_seq2seq_chatbot
tensorflow seq2seq chatbot
- ai-chatbot-framework
A python chatbot framework with Natural Language Understanding and Artificial Intelligence.
- DeepChatModels
Conversation Models in Tensorflow
- Chatbot
Build your own chatbot base on IBM Watson
- Chatbot
An AI Based Chatbot
- neural-chatbot
A chatbot based on seq2seq architecture done with tensorflow.
Chinese_Chatbot
- Seq2Seq_Chatbot_QA
使用TensorFlow实现的Sequence to Sequence的聊天机器人模型
- Chatbot
基於向量匹配的情境式聊天機器人
- chatbot-zh-torch7
中文Neural conversational model in Torch
数据集
- Cornell Movie-Dialogs Corpus
- Dialog_Corpus
Datasets for Training Chatbot System
- OpenSubtitles
A series of scripts to download and parse the OpenSubtitles corpus.
- insuranceqa-corpus-zh
OpenData in insurance area for Machine Learning Tasks
- dgk_lost_conv
dgk_lost_conv 中文对白语料 chinese conversation corpus
- Frames: A Corpus for Adding Memory to Goal-Oriented Dialogue Systems 一共 1369 段对话,平均每段对话 15 轮。
- Ubuntu Dialogue Corpus
领域专家
- Cambridge Dialogue Systems Group Steve Young
- Ming Zhou
- Jiwei Li(李纪为),
- [http://web.stanford.edu/jiweil/]
- Ryan Lowe,
- [http://cs.mcgill.ca/rlowe1/]
- Lili Mou
- Jason Williams Microsoft
- Bing Liu (刘冰) CMU
- Ian Lane
- Ondřej Dušek
- Sungjin Lee 微软
- Zhou Yu 俞舟 CMU
- 华为诺亚实验室
- 刘挺 哈尔滨工业大学
- 张伟男 哈尔滨工业大学
- [http://ir.hit.edu.cn/~wnzhang]
- Wei Wu (武威) 微软
- 赵军 中科院自动化所
- 黄民烈 清华
初步版本,水平有限,有错误或者不完善的地方,欢迎大家提建议和补充,会一直保持更新,本文为专知内容组原创内容,未经允许不得转载,如需转载请发送邮件至fangquanyi@gmail.com 或 联系微信专知小助手(Rancho_Fang)
敬请关注http://www.zhuanzhi.ai 和关注专知公众号,获取第一手AI相关知识