Large Vision-Language Models (LVLMs) have demonstrated remarkable success in a broad range of vision-language tasks, such as general visual question answering and optical character recognition (OCR). However, their performance on perception-centric tasks -- such as object detection, semantic segmentation, and depth estimation -- remains significantly inferior to that of task-specific expert models. For example, Qwen2.5-VL-7B-Instruct achieves only 19% mAP on COCO2017 val, particularly struggling with dense scenes and small object recall. In this work, we introduce Chain-of-Thought for Detection (CoT4Det), a simple but efficient strategy that reformulates perception tasks into three interpretable steps: classification, counting, and grounding -- each more naturally aligned with the reasoning capabilities of LVLMs. Extensive experiments demonstrate that our method significantly improves perception performance without compromising general vision language capabilities. With a standard Qwen2.5-VL-7B-Instruct, CoT4Det boosts mAP from 19.0% to 33.0% on COCO2017 val and achieves competitive results across a variety of perception benchmarks, outperforming baselines by +2% on RefCOCO series and 19% on Flickr30k entities.


翻译:暂无翻译

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Top
微信扫码咨询专知VIP会员