Under interference, the treatment of one unit may affect the outcomes of other units. Such interference patterns between units are typically represented by a network. Correctly specifying this network requires identifying which units can affect others -- an inherently challenging task. Nevertheless, most existing approaches assume that a known and accurate network specification is given. In this paper, we study the consequences of such misspecification. We derive bounds on the bias arising from estimating causal effects using a misspecified network, showing that the estimation bias grows with the divergence between the assumed and true networks, quantified through their induced exposure probabilities. To address this challenge, we propose a novel estimator that leverages multiple networks simultaneously and remains unbiased if at least one of the networks is correct, even when we do not know which one. Therefore, the proposed estimator provides robustness to network specification. We illustrate key properties and demonstrate the utility of our proposed estimator through simulations and analysis of a social network field experiment.
翻译:在干扰效应下,一个单元的处理可能会影响其他单元的结果。这种单元间的干扰模式通常由网络表示。正确设定该网络需要识别哪些单元可能影响其他单元——这本质上是一项具有挑战性的任务。然而,现有的大多数方法都假定已知且准确的网络设定是给定的。在本文中,我们研究了这种误设的后果。我们推导了使用误设网络估计因果效应时产生的偏差界限,表明估计偏差随着假设网络与真实网络之间的差异而增长,这种差异通过它们诱导的暴露概率来量化。为应对这一挑战,我们提出了一种新颖的估计器,该估计器同时利用多个网络,并且只要其中至少一个网络是正确的,即使我们不知道是哪一个,该估计器仍能保持无偏。因此,所提出的估计器对网络设定具有鲁棒性。我们通过模拟和对一个社交网络实地实验的分析,阐明了关键性质并证明了所提出估计器的实用性。