Algorithms have permeated throughout civil government and society, where they are being used to make high-stakes decisions about human lives. In this paper, we first develop a cohesive framework of algorithmic decision-making adapted for the public sector (ADMAPS) that reflects the complex socio-technical interactions between \textit{human discretion}, \textit{bureaucratic processes}, and \textit{algorithmic decision-making} by synthesizing disparate bodies of work in the fields of Human-Computer Interaction (HCI), Science and Technology Studies (STS), and Public Administration (PA). We then applied the ADMAPS framework to conduct a qualitative analysis of an in-depth, eight-month ethnographic case study of the algorithms in daily use within a child-welfare agency that serves approximately 900 families and 1300 children in the mid-western United States. Overall, we found there is a need to focus on strength-based algorithmic outcomes centered in social ecological frameworks. In addition, algorithmic systems need to support existing bureaucratic processes and augment human discretion, rather than replace it. Finally, collective buy-in in algorithmic systems requires trust in the target outcomes at both the practitioner and bureaucratic levels. As a result of our study, we propose guidelines for the design of high-stakes algorithmic decision-making tools in the child-welfare system, and more generally, in the public sector. We empirically validate the theoretically derived ADMAPS framework to demonstrate how it can be useful for systematically making pragmatic decisions about the design of algorithms for the public sector.


翻译:在本文件中,我们首先开发一个符合公共部门需要的逻辑决策统一框架(ADMAPS ), 反映为美国中西部大约900个家庭和1300名儿童服务的儿童福利机构内部日常使用的算法的复杂社会-技术互动。 总体而言,我们发现,需要通过综合人类-计算机互动(HCI)、科学和技术研究(STS)和公共行政(PA)领域的不同工作结构,将人类-计算机互动(HCI)、科学和技术研究(STS)和公共行政(PA)领域不同的工作组合起来。我们随后运用ADMAPS 框架,对一个深入的、为期八个月的文体学案例研究进行定性分析,以反映出在为美国中西部大约900个家庭和1300名儿童服务的儿童福利机构内部日常使用的算法之间的复杂社会-技术互动。 总体而言,我们发现,我们需要将基于实力的算法结果集中在社会生态框架中。 此外, 算法系统需要支持现有的官僚程序进程,并增强人类决策的高级算法框架,而不是在系统内部设计中, 购买一个儿童分析的结果。

0
下载
关闭预览

相关内容

专知会员服务
84+阅读 · 2020年12月5日
专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
VIP会员
相关VIP内容
专知会员服务
84+阅读 · 2020年12月5日
专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员