Graph Neural Networks (GNNs) and Transformer-based models have been increasingly adopted to learn the complex vector representations of spatio-temporal graphs, capturing intricate spatio-temporal dependencies crucial for applications such as traffic datasets. Although many existing methods utilize multi-head attention mechanisms and message-passing neural networks (MPNNs) to capture both spatial and temporal relations, these approaches encode temporal and spatial relations independently, and reflect the graph's topological characteristics in a limited manner. In this work, we introduce the Cycle to Mixer (Cy2Mixer), a novel spatio-temporal GNN based on topological non-trivial invariants of spatio-temporal graphs with gated multi-layer perceptrons (gMLP). The Cy2Mixer is composed of three blocks based on MLPs: A temporal block for capturing temporal properties, a message-passing block for encapsulating spatial information, and a cycle message-passing block for enriching topological information through cyclic subgraphs. We bolster the effectiveness of Cy2Mixer with mathematical evidence emphasizing that our cycle message-passing block is capable of offering differentiated information to the deep learning model compared to the message-passing block. Furthermore, empirical evaluations substantiate the efficacy of the Cy2Mixer, demonstrating state-of-the-art performances across various spatio-temporal benchmark datasets. The source code is available at https://github.com/leemingo/cy2mixer.


翻译:图神经网络(GNNs)和基于Transformer的模型已越来越多地被用于学习时空图的复杂向量表示,以捕获对交通数据集等应用至关重要的复杂时空依赖性。尽管现有许多方法利用多头注意力机制和消息传递神经网络(MPNNs)来同时捕获空间与时间关系,但这些方法独立编码时间与空间关系,并以有限的方式反映图的拓扑特征。本文中,我们提出了Cycle to Mixer(Cy2Mixer),这是一种基于时空图拓扑非平凡不变量、并采用门控多层感知机(gMLP)的新型时空图神经网络。Cy2Mixer由三个基于多层感知机的模块构成:用于捕获时间属性的时间模块、用于封装空间信息的消息传递模块,以及通过循环子图丰富拓扑信息的循环消息传递模块。我们通过数学证据强化了Cy2Mixer的有效性,强调相比于消息传递模块,我们的循环消息传递模块能够为深度学习模型提供差异化的信息。此外,实证评估证实了Cy2Mixer的效能,其在多个时空基准数据集上均展现出最先进的性能。源代码发布于 https://github.com/leemingo/cy2mixer。

0
下载
关闭预览

相关内容

Top
微信扫码咨询专知VIP会员