In elite soccer, substitution decisions entail significant financial and sporting consequences yet remain heavily reliant on intuition or predictive models that merely mimic historical biases. This paper introduces a Fuzzy Logic based Decision Support System (DSS) designed for real time, prescriptive game management. Unlike traditional Machine Learning approaches that encounter a predictive ceiling by attempting to replicate human behavior, our system audits performance through an objective, rule based inference engine. We propose a methodological advancement by reformulating the PlayeRank metric into a Cumulative Mean with Role Aware Normalization, eliminating the play time exposure bias inherent in cumulative sum models to enable accurate intra match comparison. The system integrates this refined metric with physiological proxies (fatigue) and contextual variables (disciplinary risk modulated by tactical role) to calculate a dynamic Substitution Priority (P final). Validation via a case study of the 2018 FIFA World Cup match between Brazil and Belgium demonstrates the system's ecological validity: it not only aligned with expert consensus on executed substitutions (for example Gabriel Jesus) but, crucially, identified high risk scenarios ignored by human decision makers. Specifically, the model flagged the "FAGNER Paradox" - a maximum priority defensive risk - minutes before a critical yellow card, and detected the "Lukaku Paradox", where an isolated assist masked a severe drop in participation. These results confirm that Fuzzy Logic offers a transparent, explainable, and superior alternative to black box models for optimizing real time tactical decisions.
翻译:在精英足球赛事中,换人决策涉及重大的财务与竞技影响,却仍高度依赖直觉或仅能复现历史偏见的预测模型。本文提出一种基于模糊逻辑的决策支持系统,专为实时、规范化的赛事管理而设计。与试图模仿人类行为而遭遇预测瓶颈的传统机器学习方法不同,本系统通过客观的、基于规则的推理引擎评估球员表现。我们提出一种方法学改进:将PlayeRank指标重构为具有角色感知归一化的累积均值,消除了累积求和模型中固有的出场时间暴露偏差,从而实现精确的比赛中实时比较。该系统将此优化指标与生理代理变量(疲劳度)及情境变量(由战术角色调节的纪律风险)相结合,以计算动态的换人优先级(P_final)。通过对2018年世界杯巴西对比利时比赛的案例验证,证明了本系统的生态效度:它不仅与专家对实际换人(例如加布里埃尔·热苏斯)的共识一致,更重要的是,识别了人类决策者忽略的高风险情景。具体而言,模型在关键黄牌出现前数分钟标记出“法格纳悖论”——一种最高优先级的防守风险,并检测到“卢卡库悖论”,即一次孤立的助攻掩盖了参与度的严重下降。这些结果证实,模糊逻辑为优化实时战术决策提供了一种透明、可解释且优于黑箱模型的替代方案。