In this paper, we derive a general representation for the expectation of the Gini coefficient estimator in terms of the Laplace transform of the underlying distribution, together with the mean and the Gini coefficient of its exponentially tilted version. This representation leads to a new characterization of the gamma family within the class of nonnegative scale families, based on a stability property under exponential tilting. As direct applications, we show that the Gini estimator is biased for both Poisson and geometric populations and provide an alternative, unified proof of its unbiasedness for gamma populations. By using the derived bias expressions, we propose plug-in bias-corrected estimators and assess their finite-sample performance through a Monte Carlo study, which demonstrates substantial improvements over the original estimator. Compared with existing approaches, our framework highlights the fundamental role of scale invariance and exponential tilting, rather than distribution-specific algebraic calculations, and complements recent results in Baydil et al. (2025) [Unbiased estimation of the gini coefficient. SPL, 222:110376] and Vila and Saulo (2025a,b) [Bias in Gini coefficient estimation for gamma mixture populations. STPA, 66:1-18; and The mth gini index estimator: Unbiasedness for gamma populations. J. Econ. Inequal].
翻译:本文推导了基尼系数估计量期望的一般表达式,该表达式通过基础分布的拉普拉斯变换、其均值及其指数倾斜版本的基尼系数表示。这一表达式基于指数倾斜下的稳定性性质,为非负尺度分布族中的伽马族提供了一个新的刻画。作为直接应用,我们证明了基尼估计量对于泊松总体和几何总体均存在偏差,并为其在伽马总体下的无偏性提供了一个替代的统一证明。利用推导出的偏差表达式,我们提出了插件式偏差校正估计量,并通过蒙特卡洛研究评估了其有限样本性能,结果表明其较原始估计量有显著改进。与现有方法相比,我们的框架强调了尺度不变性与指数倾斜的根本作用,而非依赖于特定分布的代数计算,从而对Baydil等人(2025)[基尼系数的无偏估计。SPL, 222:110376]以及Vila与Saulo(2025a,b)[伽马混合总体中基尼系数估计的偏差。STPA, 66:1-18;以及第m阶基尼指数估计量:伽马总体下的无偏性。J. Econ. Inequal]中的近期成果形成了补充。