Federated Learning (FL) has shown considerable promise in Machine Learning (ML) across numerous devices for privacy protection, efficient data utilization, and dynamic collaboration. However, mobile devices typically have limited and heterogeneous computational capabilities, and different devices may even have different tasks. This client heterogeneity is a major bottleneck hindering the practical application of FL. Existing work mainly focuses on mitigating FL's computation and communication overhead of a single task while overlooking the computing resource heterogeneity issue of different devices in FL. To tackle this, we design FedAPTA, a federated multi-task learning framework. FedAPTA overcomes computing resource heterogeneity through the developed layer-wise model pruning technique, which reduces local model size while considering both data and device heterogeneity. To aggregate structurally heterogeneous local models of different tasks, we introduce a heterogeneous model recovery strategy and a task-aware model aggregation method that enables the aggregation through infilling local model architecture with the shared global model and clustering local models according to their specific tasks. We deploy FedAPTA on a realistic FL platform and benchmark it against nine SOTA FL methods. The experimental outcomes demonstrate that the proposed FedAPTA considerably outperforms the state-of-the-art FL methods by up to 4.23\%. Our code is available at https://github.com/Zhenzovo/FedAPTA.


翻译:暂无翻译

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Top
微信扫码咨询专知VIP会员