We introduce Group Spike-and-slab Variational Bayes (GSVB), a scalable method for group sparse regression. A fast co-ordinate ascent variational inference (CAVI) algorithm is developed for several common model families including Gaussian, Binomial and Poisson. Theoretical guarantees for our proposed approach are provided by deriving contraction rates for the variational posterior in grouped linear regression. Through extensive numerical studies, we demonstrate that GSVB provides state-of-the-art performance, offering a computationally inexpensive substitute to MCMC, whilst performing comparably or better than existing MAP methods. Additionally, we analyze three real world datasets wherein we highlight the practical utility of our method, demonstrating that GSVB provides parsimonious models with excellent predictive performance, variable selection and uncertainty quantification.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
Top
微信扫码咨询专知VIP会员