Transient measurements, captured by the timeresolved systems, are widely employed in photon-efficient reconstruction tasks, including line-of-sight (LOS) and non-line-of-sight (NLOS) imaging. However, challenges persist in their 3D reconstruction due to the low quantum efficiency of sensors and the high noise levels, particularly for long-range or complex scenes. To boost the 3D reconstruction performance in photon-efficient imaging, we propose a generic Time-Resolved Transformer (TRT) architecture. Different from existing transformers designed for high-dimensional data, TRT has two elaborate attention designs tailored for the spatio-temporal transient measurements. Specifically, the spatio-temporal self-attention encoders explore both local and global correlations within transient data by splitting or downsampling input features into different scales. Then, the spatio-temporal cross attention decoders integrate the local and global features in the token space, resulting in deep features with high representation capabilities. Building on TRT, we develop two task-specific embodiments: TRT-LOS for LOS imaging and TRT-NLOS for NLOS imaging. Extensive experiments demonstrate that both embodiments significantly outperform existing methods on synthetic data and real-world data captured by different imaging systems. In addition, we contribute a large-scale, high-resolution synthetic LOS dataset with various noise levels and capture a set of real-world NLOS measurements using a custom-built imaging system, enhancing the data diversity in this field. Code and datasets are available at https://github.com/Depth2World/TRT.


翻译:暂无翻译

0
下载
关闭预览

相关内容

3D是英文“Three Dimensions”的简称,中文是指三维、三个维度、三个坐标,即有长、有宽、有高,换句话说,就是立体的,是相对于只有长和宽的平面(2D)而言。
Top
微信扫码咨询专知VIP会员