This study proposes a unified forecasting framework for high-dimensional multi-task time series to meet the prediction demands of cloud native backend systems operating under highly dynamic loads, coupled metrics, and parallel tasks. The method builds a shared encoding structure to represent diverse monitoring indicators in a unified manner and employs a state fusion mechanism to capture trend changes and local disturbances across different time scales. A cross-task structural propagation module is introduced to model potential dependencies among nodes, enabling the model to understand complex structural patterns formed by resource contention, link interactions, and changes in service topology. To enhance adaptability to non-stationary behaviors, the framework incorporates a dynamic adjustment mechanism that automatically regulates internal feature flows according to system state changes, ensuring stable predictions in the presence of sudden load shifts, topology drift, and resource jitter. The experimental evaluation compares multiple models across various metrics and verifies the effectiveness of the framework through analyses of hyperparameter sensitivity, environmental sensitivity, and data sensitivity. The results show that the proposed method achieves superior performance on several error metrics and provides more accurate representations of future states under different operating conditions. Overall, the unified forecasting framework offers reliable predictive capability for high-dimensional, multi-task, and strongly dynamic environments in cloud native systems and provides essential technical support for intelligent backend management.
翻译:本研究提出了一种面向高维多任务时间序列的统一预测框架,以满足在高度动态负载、耦合指标和并行任务下运行的云原生后端系统的预测需求。该方法构建了共享编码结构,以统一方式表示多样化的监控指标,并采用状态融合机制来捕捉不同时间尺度上的趋势变化和局部扰动。引入跨任务结构传播模块来建模节点间的潜在依赖关系,使模型能够理解由资源竞争、链路交互和服务拓扑变化所形成的复杂结构模式。为增强对非平稳行为的适应性,该框架集成了动态调整机制,可根据系统状态变化自动调节内部特征流,确保在突发负载转移、拓扑漂移和资源抖动情况下的稳定预测。实验评估比较了多种模型在不同指标上的表现,并通过超参数敏感性、环境敏感性和数据敏感性分析验证了该框架的有效性。结果表明,所提方法在多个误差指标上均取得了优越性能,并在不同运行条件下提供了更准确的未来状态表征。总体而言,该统一预测框架为云原生系统中的高维、多任务和强动态环境提供了可靠的预测能力,并为智能后端管理提供了关键技术支撑。