Generalization across the domains is not possible without asserting a structure that constrains the unseen target domain w.r.t. the source domain. Building on causal transportability theory, we design an algorithm for zero-shot compositional generalization which relies on access to qualitative domain knowledge in form of a causal graph for intra-domain structure and discrepancies oracle for inter-domain mechanism sharing. \textit{Circuit-TR} learns a collection of modules (i.e., local predictors) from the source data, and transport/compose them to obtain a circuit for prediction in the target domain if the causal structure licenses. Furthermore, circuit transportability enables us to design a supervised domain adaptation scheme that operates without access to an explicit causal structure, and instead uses limited target data. Our theoretical results characterize classes of few-shot learnable tasks in terms of graphical circuit transportability criteria, and connects few-shot generalizability with the established notion of circuit size complexity; controlled simulations corroborate our theoretical results.
翻译:若不施加一种能够约束未见目标域相对于源域的结构,跨域泛化便无法实现。基于因果可迁移性理论,我们设计了一种零样本组合泛化算法,该算法依赖于以因果图形式提供的域内结构定性领域知识,以及用于域间机制共享的差异预言机。\textit{Circuit-TR} 从源数据中学习一组模块(即局部预测器),并在因果结构允许的情况下,通过迁移/组合这些模块来构建用于目标域预测的电路。此外,电路可迁移性使我们能够设计一种监督域适应方案,该方案无需访问显式因果结构,而是利用有限的目标数据。我们的理论结果通过图形化电路可迁移性准则刻画了少样本可学习任务的类别,并将少样本泛化能力与已建立的电路规模复杂度概念联系起来;受控仿真实验验证了我们的理论结果。