Diabetic retinopathy (DR) remains a leading cause of preventable blindness, yet large-scale screening is constrained by limited specialist availability and variable image quality across devices and populations. This work investigates whether feature-level fusion of complementary convolutional neural network (CNN) backbones can deliver accurate and efficient binary DR screening on globally sourced fundus images. Using 11,156 images pooled from five public datasets (APTOS, EyePACS, IDRiD, Messidor, and ODIR), we frame DR detection as a binary classification task and compare three pretrained models (ResNet50, EfficientNet-B0, and DenseNet121) against pairwise and tri-fusion variants. Across five independent runs, fusion consistently outperforms single backbones. The EfficientNet-B0 + DenseNet121 (Eff+Den) fusion model achieves the best overall mean performance (accuracy: 82.89\%) with balanced class-wise F1-scores for normal (83.60\%) and diabetic (82.60\%) cases. While the tri-fusion is competitive, it incurs a substantially higher computational cost. Inference profiling highlights a practical trade-off: EfficientNet-B0 is the fastest (approximately 1.16 ms/image at batch size 1000), whereas the Eff+Den fusion offers a favorable accuracy--latency balance. These findings indicate that lightweight feature fusion can enhance generalization across heterogeneous datasets, supporting scalable binary DR screening workflows where both accuracy and throughput are critical.


翻译:糖尿病视网膜病变(DR)仍是可预防性失明的主要原因,然而大规模筛查受限于专科医生资源不足以及不同设备和人群间图像质量的差异。本研究探讨了在来自全球的眼底图像上,通过特征级融合互补的卷积神经网络(CNN)骨干网络,能否实现准确且高效的二元DR筛查。通过汇集五个公开数据集(APTOS、EyePACS、IDRiD、Messidor和ODIR)的11,156张图像,我们将DR检测构建为二元分类任务,并比较了三个预训练模型(ResNet50、EfficientNet-B0和DenseNet121)与其成对及三重融合变体。在五次独立运行中,融合模型始终优于单一骨干网络。EfficientNet-B0 + DenseNet121(Eff+Den)融合模型取得了最佳的整体平均性能(准确率:82.89%),且在正常(83.60%)与糖尿病(82.60%)病例上均获得了均衡的类别F1分数。虽然三重融合模型性能相当,但其计算成本显著更高。推理性能分析突显了一个实际的权衡:EfficientNet-B0速度最快(在批大小为1000时约1.16毫秒/图像),而Eff+Den融合则在准确性与延迟之间提供了更优的平衡。这些结果表明,轻量级特征融合可以增强模型在异构数据集上的泛化能力,为对准确性和吞吐量均有严格要求的可扩展二元DR筛查流程提供了支持。

0
下载
关闭预览

相关内容

Top
微信扫码咨询专知VIP会员