Divisor methods are well known to satisfy house monotonicity, which allows representative seats to be allocated sequentially. We focus on stationary divisor methods defined by a rounding cut point $c \in [0,1]$. For such methods with integer-valued votes, the resulting apportionment sequences are periodic. Restricting attention to two-party allocations, we characterize the set of possible sequences and establish a connection between the lexicographical ordering of these sequences and the parameter $c$. We then show how sequences for all pairs of parties can be systematically extended to the $n$-party setting. Further, we determine the number of distinct sequences in the $n$-party problem for all $c$. Our approach offers a refined perspective on large-party bias: rather than viewing large parties as simply receiving more seats, we show that they instead obtain their seats earlier in the apportionment sequence. Of particular interest is a new relationship we uncover between the sequences generated by the smallest divisors (Adams) and greatest divisors (d'Hondt or Jefferson) methods.


翻译:除数法因满足议院单调性而广为人知,该性质允许按顺序分配代表席位。我们聚焦于由舍入临界点 $c \in [0,1]$ 定义的固定除数法。对于此类处理整数值票数的方法,所产生的席位分配序列具有周期性。将关注点限制在两党分配的情形下,我们刻画了所有可能序列的集合,并建立了这些序列的字典序与参数 $c$ 之间的关联。随后,我们展示了如何将适用于所有政党对的序列系统地推广至 $n$ 党场景。此外,我们确定了在任意 $c$ 下 $n$ 党问题中不同序列的数量。我们的方法为理解大党偏差提供了一个精细的视角:与其简单认为大党获得更多席位,我们证明它们实际上是在分配序列中更早地获得席位。特别值得关注的是,我们在最小除数法(亚当斯法)与最大除数法(顿特法或杰斐逊法)所生成的序列之间揭示了一种新的关系。

0
下载
关闭预览

相关内容

数学上,序列是被排成一列的对象(或事件);这样每个元素不是在其他元素之前,就是在其他元素之后。这里,元素之间的顺序非常重要。
Top
微信扫码咨询专知VIP会员