Real-time energy forecasting on edge devices represents a major challenge for smart grid optimization and intelligent buildings. We present LAD-BNet (Lag-Aware Dual-Branch Network), an innovative neural architecture optimized for edge inference with Google Coral TPU. Our hybrid approach combines a branch dedicated to explicit exploitation of temporal lags with a Temporal Convolutional Network (TCN) featuring dilated convolutions, enabling simultaneous capture of short and long-term dependencies. Tested on real energy consumption data with 10-minute temporal resolution, LAD-BNet achieves 14.49% MAPE at 1-hour horizon with only 18ms inference time on Edge TPU, representing an 8-12 x acceleration compared to CPU. The multi-scale architecture enables predictions up to 12 hours with controlled performance degradation. Our model demonstrates a 2.39% improvement over LSTM baselines and 3.04% over pure TCN architectures, while maintaining a 180MB memory footprint suitable for embedded device constraints. These results pave the way for industrial applications in real-time energy optimization, demand management, and operational planning.
翻译:边缘设备上的实时能源预测是智能电网优化与智能建筑领域的一项重大挑战。本文提出LAD-BNet(滞后感知双分支网络),这是一种专为Google Coral TPU边缘推理优化的创新神经架构。我们的混合方法将专门用于显式利用时间滞后的分支与采用扩张卷积的时间卷积网络(TCN)相结合,从而能够同时捕获短期与长期依赖关系。在时间分辨率为10分钟的真实能耗数据上进行测试,LAD-BNet在1小时预测范围内实现了14.49%的平均绝对百分比误差(MAPE),在Edge TPU上的推理时间仅为18毫秒,相比CPU实现了8至12倍的加速。该多尺度架构能够支持长达12小时的预测,且性能下降可控。我们的模型相比LSTM基线提升了2.39%,相比纯TCN架构提升了3.04%,同时保持180MB的内存占用,满足嵌入式设备的资源限制。这些结果为实时能源优化、需求管理与运营规划等工业应用铺平了道路。