Gaussian mixture models (GMMs) are fundamental statistical tools for modeling heterogeneous data. Due to the nonconcavity of the likelihood function, the Expectation-Maximization (EM) algorithm is widely used for parameter estimation of each Gaussian component. Existing analyses of the EM algorithm's convergence to the true parameter focus on either the two-component case or multi-component settings with known mixing probabilities and isotropic covariance matrices. In this work, we study the convergence of the EM algorithm for multi-component GMMs in full generality. The population-level EM is shown to converge to the true parameter when the smallest separation among all pairs of Gaussian components exceeds a logarithmic factor of the largest separation and the reciprocal of the minimal mixing probabilities. At the sample level, the EM algorithm is shown to be minimax rate-optimal, up to a logarithmic factor. We develop two distinct novel analytical approaches, each tailored to a different regime of separation, reflecting two complementary perspectives on the use of EM. As a byproduct of our analysis, we show that the EM algorithm, when used for community detection, also achieves the minimax optimal rate of misclustering error under milder separation conditions than spectral clustering and Lloyd's algorithm, an interesting result in its own right. Our analysis allows the number of components, the minimal mixing probabilities, the separation between Gaussian components and the dimension to grow with the sample size. Simulation studies corroborate our theoretical findings.


翻译:暂无翻译

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Top
微信扫码咨询专知VIP会员