The Seifert-van Kampen theorem computes the fundamental group of a space from the fundamental groups of its constituents. We formalize this theorem within the framework of computational paths -- an approach to equality where witnesses are explicit sequences of rewrites governed by the confluent, terminating LND_EQ-TRS. Our contributions are: (i) pushouts as higher-inductive types with explicit path constructors; (ii) free products and amalgamated free products as quotients of word representations; (iii) an encode-decode proof establishing pi_1(Pushout(A,B,C)) = pi_1(A) *_{pi_1(C)} pi_1(B); and (iv) applications to the figure-eight (pi_1(S^1 V S^1) = Z * Z), 2-sphere (pi_1(S^2) = 1), and 3-sphere (pi_1(S^3) = 1 with Hopf fibration context). Recent extensions include: higher homotopy groups pi_n via the weak omega-groupoid structure (with pi_2 abelian via Eckmann-Hilton, and pi_2 = 1 in the 1-groupoid truncated setting); truncation levels connecting the framework to HoTT n-types; automated path simplification tactics; basic covering space theory with pi_1-actions on fibers; fibration theory with long exact sequences; and Eilenberg-MacLane space characterization (S^1 = K(Z,1)). The framework makes coherence witnesses explicit as rewrite derivations. The development is formalized in Lean 4 with over 25,000 lines of mechanized proofs. This demonstrates that the encode-decode method for higher-inductive types becomes fully constructive when path equality is decidable via normalization.
翻译:Seifert-van Kampen定理通过空间各组成部分的基本群来计算该空间的基本群。我们在计算路径的框架内形式化了这一定理——计算路径是一种处理相等性的方法,其中见证者是受合流且终止的LND_EQ-TRS系统所支配的显式重写序列。我们的贡献包括:(i) 将推出构造为具有显式路径构造子的高阶归纳类型;(ii) 将自由积与融合自由积定义为词表示的商;(iii) 通过编码-解码证明确立 pi_1(Pushout(A,B,C)) = pi_1(A) *_{pi_1(C)} pi_1(B);(iv) 应用于8字形空间(pi_1(S^1 V S^1) = Z * Z)、2维球面(pi_1(S^2) = 1)及3维球面(在Hopf纤维化背景下 pi_1(S^3) = 1)。近期扩展包括:通过弱ω-群胚结构研究高阶同伦群 pi_n(借助Eckmann-Hilton论证 pi_2 的阿贝尔性,在1-群胚截断设定下 pi_2 = 1);连接框架与同伦类型论n-类型的截断层级;自动路径简化策略;具有 pi_1 在纤维上作用的基本覆叠空间理论;具有长正合序列的纤维化理论;以及Eilenberg-MacLane空间的特征刻画(S^1 = K(Z,1))。该框架将相干性见证显式表达为重写推导过程。本项研究在Lean 4中形式化实现,包含超过25,000行机械化证明。这表明当路径相等性可通过正规化判定时,针对高阶归纳类型的编码-解码方法将具备完全的构造性。