RAPID-LLM is a unified performance modeling framework for large language model (LLM) training and inference on GPU clusters. It couples a DeepFlow-based frontend that generates hardware-aware, operator-level Chakra execution traces from an abstract LLM specification (model shape, batch/sequence settings, training vs. inference, and hybrid parallelism choices) with an extended Astra-Sim backend that executes those traces on explicit multi-dimensional network topologies with congestion-aware routing and support for degraded and faulty links. The frontend assigns per-operator latency using a tile-based model that accounts for SM under-utilization and multi-level memory traffic (SRAM/ L2/ HBM), and prunes memory-infeasible configurations using an activation-liveness traversal under recomputation, parallelism and ZeRO/FDSP sharding policies. Across A100-based validation cases, RAPID-LLM predicts Llama inference step latency and GPT-scale training time per batch within 10.4\% relative to published measurements, and matches ns-3 packet-level results within 8\% on representative communication workloads. Case studies demonstrate how RAPID-LLM enables fast, exhaustive sweeps over hybrid-parallel configurations, quantifies sensitivity to soft link faults under realistic routing and congestion, and evaluates hypothetical GPU design variants including HBM bandwidth throttling effects.
翻译:RAPID-LLM 是一个用于 GPU 集群上大语言模型(LLM)训练与推理的统一性能建模框架。该框架将基于 DeepFlow 的前端与扩展的 Astra-Sim 后端相结合:前端根据抽象的 LLM 规范(模型结构、批次/序列设置、训练与推理模式以及混合并行策略选择)生成硬件感知的、算子级的 Chakra 执行轨迹;后端则在显式的多维网络拓扑上执行这些轨迹,支持拥塞感知路由以及降级与故障链路的模拟。前端采用基于计算块(tile)的模型来分配每个算子的延迟,该模型考虑了流多处理器(SM)利用率不足以及多级内存(SRAM/L2/HBM)流量,并通过在重计算、并行化以及 ZeRO/FDSP 分片策略下的激活活性遍历来剪枝内存不可行的配置。在基于 A100 GPU 的验证案例中,RAPID-LLM 对 Llama 模型推理步骤延迟和 GPT 规模训练每批次时间的预测,与已发布的实测结果相比相对误差在 10.4% 以内;在代表性通信负载上,其预测结果与 ns-3 数据包级仿真结果的匹配度在 8% 以内。案例研究表明,RAPID-LLM 能够实现对混合并行配置的快速、穷举式搜索,量化在实际路由和拥塞情况下对软链路故障的敏感性,并评估包括 HBM 带宽限制效应在内的假设性 GPU 设计变体。