For autonomous legal agents to operate safely in high-stakes domains, they require a foundation of absolute determinism and auditability-guarantees that standard Retrieval-Augmented Generation (RAG) frameworks cannot provide. When interacting with temporal knowledge graphs that model the complex evolution of legal norms, agents must navigate versioning, causality, and hierarchical structures with precision, a task for which black-box vector search is ill-suited. This paper introduces a new architectural pattern to solve this: a formal Primitive API designed as a secure execution layer for reasoning over such graphs. Instead of a monolithic query engine, our framework provides a library of canonical primitives-atomic, composable, and auditable primitives. This design empowers planner-guided agents to decompose complex legal questions into transparent execution plans, enabling critical tasks with full verifiability, including: (i) precise point-in-time version retrieval, (ii) robust causal lineage tracing, and (iii) context-aware hybrid search. Ultimately, this architecture transforms opaque retrieval into auditable reasoning, turning the agent's internal process from a black box into a verifiable log of deterministic primitives and providing a blueprint for building the next generation of trustworthy legal AI.


翻译:为使自主法律智能体能在高风险领域安全运行,其必须建立在绝对确定性与可审计性的基础之上——这是标准检索增强生成(RAG)框架无法提供的保障。在与建模法律规范复杂演化的时态知识图谱交互时,智能体必须精确处理版本控制、因果关系及层次化结构,而黑盒向量搜索方法难以胜任此任务。本文提出一种新的架构模式以解决该问题:一种形式化的基元API,设计为对此类图谱进行推理的安全执行层。该框架并非采用单一查询引擎,而是提供一套规范基元库——这些基元具有原子性、可组合性与可审计性。该设计使得由规划器引导的智能体能够将复杂的法律问题分解为透明的执行计划,从而实现具备完全可验证性的关键任务,包括:(i)精确的时间点版本检索,(ii)鲁棒的因果溯源追踪,以及(iii)上下文感知的混合搜索。最终,此架构将不透明的检索过程转化为可审计的推理过程,将智能体的内部处理从黑盒转变为确定性基元的可验证日志,为构建下一代可信赖法律人工智能提供了蓝图。

0
下载
关闭预览

相关内容

Top
微信扫码咨询专知VIP会员