As robotic arm applications extend beyond industrial settings into service-oriented sectors such as catering, household and retail, existing control algorithms struggle to achieve the agile manipulation required for complex environments with dynamic trajectories, unpredictable interactions, and diverse objects. This paper presents a biomimetic control framework based on Spiking Neural Networks (SNNs), inspired by the human Central Nervous System (CNS), to achieve agile control in such environments. The proposed framework features five control modules (cerebral cortex, cerebellum, thalamus, brainstem, and spinal cord), three hierarchical control levels (first-order, second-order, and third-order), and two information pathways (ascending and descending). Each module is fully implemented using SNN. The spinal cord module uses spike encoding and Leaky Integrate-and-Fire (LIF) neurons for feedback control. The brainstem module employs a network of LIF and non-spiking LIF neurons to dynamically adjust spinal cord parameters via reinforcement learning. The thalamus module similarly employs a network of LIF and non-spiking LIF neurons to adjust the cerebellum's torque outputs via reinforcement learning. The cerebellum module, which provides feedfoward gravity compensation torques, uses a recurrent SNN to learn the robotic arm's dynamics through regression. The framework is validated both in simulation and on real-world robotic arm platform under various loads and trajectories. Results demonstrate that our method outperforms the industrial-grade position control in manipulation agility.


翻译:随着机械臂应用从工业领域扩展到餐饮、家庭和零售等面向服务的行业,现有控制算法难以在具有动态轨迹、不可预测交互和多样物体的复杂环境中实现所需的灵巧操作能力。本文提出一种基于脉冲神经网络(SNN)的仿生控制框架,其灵感来源于人类中枢神经系统(CNS),旨在实现此类环境下的敏捷控制。所提出的框架包含五个控制模块(大脑皮层、小脑、丘脑、脑干和脊髓)、三个层次控制级别(一阶、二阶和三阶)以及两条信息通路(上行与下行)。每个模块均完全采用SNN实现。脊髓模块利用脉冲编码和漏积分发放(LIF)神经元进行反馈控制;脑干模块通过LIF与非脉冲LIF神经元构成的网络,借助强化学习动态调整脊髓参数;丘脑模块同样采用LIF与非脉冲LIF神经元网络,通过强化学习调节小脑的扭矩输出;小脑模块提供前馈重力补偿扭矩,采用循环SNN通过回归学习机械臂动力学特性。该框架在仿真和真实机械臂平台上进行了多负载、多轨迹验证,结果表明本方法在操作灵巧性上优于工业级位置控制。

0
下载
关闭预览

相关内容

Top
微信扫码咨询专知VIP会员