【KDD2018来袭】31大人工智能前沿Tutorial,百家争鸣,百花齐放

2018 年 8 月 19 日 专知

【导读】当地时间 8 月 19 - 23 日,备受关注的 人工智能数据挖掘顶级国际会议 KDD 2018在英国伦敦举行。在这次会议上,各大人工智能和机器学习领域的研究者为我们呈现了这一领域的研究前沿内容,其中包括:图挖掘算法隐私保护医疗健康AI社交网络建模、出行零售人工智能等等,呈现出很强的多样性;业界涵盖Google、微软、Linkedin与国内的京东、滴滴出行等等,包括京东的《零售中的人工智能》与滴滴《交通出行中的人工智能》。与此同时,一些资深研究者也带来了一些极具看点和启发价值的演讲和教程,如:来自IBM《基于深度学习的计算医疗健康》,Google的《大规模图算法:理论, 实践》,俄罗斯的《Web服务在线评价策略》,专知整理了今天KDD31个Tutorial介绍



KDD 2018 Conventional Tutorial


以下是专知对下面Tutorials 的简单介绍:


  • T01. 图与张量挖掘

    Graph and Tensor Mining for Fun and Profit

    Xin Luna Dong (Amazon), Christos Faloutsos (Amazon and CMU), Andrey Kan (Amazon), Subhbrata Mukherjee (Amazon), and Jun Ma (Amazon) 

    链接

  • http://www.cs.cmu.edu/~christos/TALKS/18-08-KDD-tut/


  • T02. 工业中保护隐私的数据挖掘:实践中的挑战和经验教训

    Privacy-preserving Data Mining in Industry: Practical Challenges and Lessons Learned
    Krishnaram Kenthapadi (LinkedIn), Ilya Mironov (Google), Abhradeep Guha Thakurta (UC Santa Cruz) 

    链接:

  • https://sites.google.com/view/kdd2018privacytutorial/


  • T03. 图探索:让我展示一下您的图中相关的内容

    Graph Exploration: Let me Show what is Relevant in your Graph

     Davide Mottin (HPI), Emmanuel Müller (HPI) 

    链接:

  • https://hpi.de//mueller/tutorials/graph-exploration-kdd.html


  • T04. 事实确证:理论与实践

       Fact Checking: Theory and Practice (KDD 2018 Tutorial)

      Xin Luna Dong (Amazon), Christos Faloutsos (Amazon and CMU),    

      Xian Li (Amazon), Subhabrata Mukherjee (Amazon), Prashant  

      Shiralkar (Amazon) 

  • 链接:

  • https://shiralkarprashant.github.io/fact-checking-tutorial-KDD2018/



  • T05. 俄罗斯-Web服务的在线评价方法 

    Online Evaluation for Effective Web Service Development

     Roman Budylin (Yandex), Alexey Drutsa (Yandex), Gleb Gusev (Yandex), Pavel Serdyukov (Yandex), Igor Yashkov (Yandex) 

    链接:

  • https://research.yandex.com/tutorials/online-evaluation/kdd-2018


  • T06. 重描述挖掘 :理论、算法、应用

  • Redescription Mining: Theory, Algorithms, and Applications
    Esther Galbrun (Aalto University), Pauli Miettinen (Max Planck Institute for Informatics) 

    链接:

    http://siren.mpi-inf.mpg.de/tutorial_kdd2018/


  • T07. 团队网络科学:描述、预测和优化

    Network Science of Teams: Characterization, Prediction, and Optimization 
     Liangyue Li (Arizona State University), Hanghang Tong (Arizona State University) 

  • 链接:

  • http://www.public.asu.edu/~liangyue/team-tutorial.html


  • T08. 反歧视学习:从联想到因果

    Anti-discrimination Learning: From Association to Causation AI
    Lu Zhang (University of Arkansas), Yongkai Wu (University of Arkansas), Xintao Wu (University of Arkansas) 

    链接:

  • http://csce.uark.edu/~xintaowu/kdd18-tutorial/


  • T09. 规模隐私:实践中的局部差异隐私

    Privacy at Scale: Local Differential Privacy in Practice 
    Graham Cormode(University Of Warwick), Tejas Kulkarni (University Of Warwick), Ninghui Li (Purdue University), Tianhao Wang (Purdue University) 

       链接:

    https://sites.google.com/view/kdd2018-tutorial/home


  • T10. 真实世界交互学习

    Real World Interactive Learning 

        Alekh Agarwal (Microsoft Research) 

         链接:

       http://hunch.net/~rwil/kdd2018.html


  • T11. Google大规模图算法:理论, 实践

    Large-Scale Graph Algorithmics: Theory and Practice Generalizations

    Silvio Lattanzi (Google), Vahab Mirrokni (Google)

  • 链接:

  • https://sites.google.com/corp/view/lsga/home


  • T12. 绘图、抽样、流式和空间效率优化

    Graph Sketching, Sampling, Streaming, and Space-Efficient Optimization
    Sudipto Guha (Amazon) and Andrew McGregor (UMass Amherst) 

    链接:

  • https://people.cs.umass.edu/~mcgregor/graphs/


  • T13. 滴滴-交通出行中的人工智能 

    Artificial Intelligence in Transportation 
    Zheng Wang (Didi Chuxing), Yan Liu (Didi Chuxing & University of Southern California), Jieping Ye (Didi Chuxing & University of Michigan, Ann Arbor) 

    链接:

  • https://outreach.didichuxing.com/tutorial/kdd2018/



  • T15. 从队列,电子健康记录和进一步的病人相关数据的知识发现

    Knowledge Discovery from Cohorts, Electronic Health Records and further Patient-related data 
    Panagiotis Papapetrou (Stockholm University) and Myra Spiliopoulou (University of Magdeburg) 

    链接:

  • http://www.kmd.ovgu.de/KMD+Events/Data+Science+for+Health.html


  • T16. 社交媒体的两极分化:如何发现和缓解

    Polarization in social media: how to detect and mitigate
    Aristides Gionis (Aalto University), Michael Mathioudakis (University of Helsinki) 

    链接:

  • http://gvrkiran.github.io/polarization/


  • T17. 因果推理和反事实推断

    Causal Inference and Counterfactual Reasoning 
    Emre Kiciman(Microsoft Research), Amit Sharma (Microsoft Research) 

    链接:

  • https://causalinference.gitlab.io/kdd-tutorial/


  • T18. 图度量空间

    Graph Metric Spaces
    Jose Bento (Boston College), Tina Eliassi-Rad (Northeastern), and Stratis Ioannidis (Northeastern) 

    链接:

  • https://neu-spiral.github.io/GraphMetricSpaces/


  • T19. 算法地图推理科学

    The Science of Algorithmic Map Inference
     Favyen Bastani (MIT), Songtao He (MIT), Sofiane Abbar (QCRI), Mohammad Alizadeh (MIT), Sanjay Chawla (QCRI) 

    链接:

  • https://sites.google.com/view/algorithmic-map-making/home


  • T20. 京东-数据科学:零售作为一种服务

    Data Science in Retail-as-a-Service Retrieval
    Zuo-Jun (Max) Shen (UC Berkeley), Rong Yuan (JD.com), Di Wu (JD.com), Jian Pei (JD.com) 

    链接:

  • http://www.aigsic.com/kdd_2018_raas.html




  • T21. 众包数据挖掘

    Crowd-Powered Data Mining 
    Chengliang Chai(Tsinghua University), Ju Fan(Renmin University), Guoliang Li(Tsinghua University), Jiannan Wang(SFU), Yudian Zheng(Twitter) 

    链接:

  • http://dbgroup.cs.tsinghua.edu.cn/ligl/kdd


  • T22. 行为分析:方法和应用

    Behavior Analytics: Methods and Applications 
     Longbing Cao(University of Technology Sydney), Philip S Yu (University of Illinois at Chicago), Guansong Pang (University of Technology Sydney) 

    链接:

  • http://kdd2018tutorial-behavior.datasciences.org/



  • T23. 深度学习计算医疗

    Deep Learning for Computational Healthcare 
    Edward Choi (Georgia Tech), Cao Xiao (IBM Research) and Jimeng Sun (Georgia Tech) 

    链接:

  • http://dl4health.org/


  • T24. 端到端的目标引导问答系统

    End-to-end Goal-oriented Question Answering Systems 
    Deepak Agarwal (LinkedIn), Bee-Chung Chen (LinkedIn), Qi He (LinkedIn), Mikhail Obukhov (LinkedIn), Jaewon Yang (LinkedIn), Liang Zhang (LinkedIn) 

  • 链接:

  • https://sites.google.com/view/goal-oriented-qa/


  • T25. 多维度文本数据分析

    Towards Multidimensional Analysis of Text Corpora
    Jingbo Shang (UIUC), Chao Zhang (UIUC), Jiaming Shen (UIUC), Jiawei Han (UIUC) 

    链接:

    https://shangjingbo1226.github.io/2018-04-21-kdd-tutorial/


  • T26. 社交网络计算

    Computational Models for Social Network Analysis
    Yuxiao Dong (Microsoft Research), Jie Tang (Tsinghua University) 

    链接:

  • https://aminer.org/kdd18-sna


  • T27. 医疗AI中可解释模型

    Explainable Models for Healthcare AI 
    Muhammad Aurangzeb Ahmad, Dr. Carly Eckert and Ankur Teredesai (University of Washington) 

    链接:

  • https://mlhealthcare.github.io/


  • T28. 知识图谱构建

    Building a Large-scale, Accurate and Fresh Knowledge Graph
     Yuqing Gao (Microsoft), Jisheng Liang (Microsoft), Benjamin Han (Microsoft), Mohamed Yakout (Microsoft), Ahmed Mohamed (Microsoft) 

    链接:

  • https://satorikdd2018.azurewebsites.net/


  • T29. 数据科学中的博弈论:获取真实的信息

    Game Theory to Data Science: Eliciting Truthful Information
    Boi Faltings and Goran Radanovic

    链接:

  • https://lia.epfl.ch/~faltings/ijcai2018_tutorial_web/


  • T30. 文本提取和推断

    Knowledge Extraction and Inference from Text: Shallow, Deep, and Everything in Between
    Knowledge Extraction and Inference from Text: Shallow, Deep, and Everything in Between

    链接:

  • https://sites.google.com/site/keit2018kdd/


    T31. 网络数据建模

    Modeling Data With Networks + Network Embedding: Problems, Methodologies and Frontiers 
    Peng Cui (Tsinghua University), Jian Pei (SFU), Wenwu Zhu (Tsinghua University), Tanya Berger-Wolf (UIC), Ivan Brugere (UIC) Bryan Perozzi (Google) 

    链接:

    https://ivanbrugere.github.io/kdd2018/


请关注专知公众号(扫一扫最下面专知二维码,或者点击上方蓝色专知),

  • 后台回复“LSGA” 就可以获取Google 239页 大规模图算法:理论与实践 PPT下载链接~ 

  • 后台回复“DL4CH” 就可以获取深度学习计算医疗 PPT下载链接~ 


以上就是全部的tutorial,选取Google 239页 大规模图算法:理论与实践的有意思的ppt分享给大家。


KDD 2018 

Conventional Tutorials

http://www.kdd.org/kdd2018/tutorials



-END-

专 · 知


人工智能领域26个主题知识资料全集获取加入专知人工智能服务群: 欢迎微信扫一扫加入专知人工智能知识星球群,获取专业知识教程视频资料和与专家交流咨询!



请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录专知,获取更多AI知识资料!


请加专知小助手微信(扫一扫如下二维码添加),加入专知主题群(请备注主题类型:AI、NLP、CV、 KG等)交流~

请关注专知公众号,获取人工智能的专业知识!

点击“阅读原文”,使用专知

登录查看更多
10

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
147+阅读 · 2020年7月6日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
第一届深度匹配实战研讨会成功召开
中国科学院网络数据重点实验室
9+阅读 · 2019年3月4日
人工智能 | 国际会议信息6条
Call4Papers
5+阅读 · 2019年1月4日
人工智能领域顶会IJCAI 2018 接受论文列表
专知
5+阅读 · 2018年5月16日
干货 | KDD2017现场:中国论坛直击(讲座完整PPT)
大数据文摘
3+阅读 · 2017年8月16日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
Arxiv
15+阅读 · 2019年6月25日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
23+阅读 · 2018年8月3日
Arxiv
11+阅读 · 2018年5月21日
Arxiv
9+阅读 · 2018年3月28日
Arxiv
5+阅读 · 2017年4月12日
VIP会员
相关VIP内容
相关论文
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
Arxiv
15+阅读 · 2019年6月25日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
23+阅读 · 2018年8月3日
Arxiv
11+阅读 · 2018年5月21日
Arxiv
9+阅读 · 2018年3月28日
Arxiv
5+阅读 · 2017年4月12日
Top
微信扫码咨询专知VIP会员